
WildFly Admin Guide
WildFly developer team

Version {version}, 2017-09-19

Core management concepts
1. Target Audience . 2

1.1. Prerequisites . 2

1.2. Examples in this guide. 2

2. Core management concepts. 3

2.1. Operating mode. 3

2.2. General configuration concepts . 7

2.3. Management resources. 10

3. Management Clients . 22

3.1. Web Management Interface . 22

3.2. Default HTTP Interface Security . 23

3.3. Default Native Interface Security . 24

3.4. Command Line Interface . 25

3.5. Configuration Files . 25

4. Interfaces and ports. 28

4.1. Interface declarations . 28

4.2. Socket Binding Groups . 29

4.3. IPv4 versus IPv6 . 30

5. Administrative security . 32

6. Security Realms . 33

6.1. General Structure . 33

6.2. Using a Realm . 34

6.3. Authentication. 35

6.4. Authorization . 36

6.5. Out Of The Box Configuration . 37

6.6. add-user utility . 40

6.7. JMX Security. 44

6.8. Detailed Configuration . 45

6.9. Plug Ins . 51

6.10. Examples . 58

7. Authorizing management actions with Role Based Access Control . 62

7.1. Access Control Providers . 62

7.2. RBAC provider overview . 62

7.3. Switching to the "rbac" provider . 64

7.4. Mapping users and groups to roles . 66

7.5. Adding custom roles in a managed domain. 71

7.6. Configuring constraints . 74

7.7. RBAC effect on administrator user experience . 81

7.8. Learning about your own role mappings. 85

7.9. "Run-as" capability for SuperUsers . 86

8. Application deployment . 88

8.1. Managed Domain . 88

8.2. Standalone Server . 95

8.3. Managed and Unmanaged Deployments . 99

8.4. Deployment Overlays . 102

9. Subsystem configuration . 103

9.1. EE Subsystem Configuration . 103

9.2. Naming Subsystem Configuration . 111

9.3. DataSource configuration . 116

9.4. Logging Configuration. 121

9.5. EJB3 subsystem configuration guide . 137

9.6. Undertow subsystem configuration. 141

9.7. Messaging configuration . 149

9.8. Security subsystem configuration . 166

9.9. Web services configuration . 177

9.10. Resource adapters . 183

9.11. Batch (JSR-352) Subsystem Configuration . 185

9.12. JSF Configuration . 190

9.13. JMX subsystem configuration . 192

9.14. Deployment Scanner configuration. 196

9.15. Core Management Subsystem Configuration . 198

9.16. Simple configuration subsystems . 202

10. Domain Setup . 204

10.1. Domain Controller Configuration . 204

10.2. Host Controller Configuration. 205

10.3. Server groups . 209

10.4. Servers . 211

11. Management tasks. 213

11.1. Command line parameters . 213

11.2. Starting & stopping Servers in a Managed Domain . 220

11.3. JVM settings . 222

11.4. Audit logging . 223

11.5. Canceling Management Operations. 233

11.6. Configuration file history . 237

12. Management API reference. 241

12.1. Global operations . 241

12.2. Detyped management and the jboss-dmr library . 246

12.3. Description of the Management Model. 259

12.4. The HTTP management API. 268

12.5. The native management API . 275

13. CLI Recipes . 297

13.1. Properties. 297

13.2. Configuration . 298

13.3. Runtime . 303

13.4. Scripting . 303

13.5. Statistics . 303

13.6. Deployment . 303

13.7. Downloading files with the CLI. 305

© 2017 The original authors.

1

Chapter 1. Target Audience
This document is a guide to the setup, administration, and configuration of WildFly.

1.1. Prerequisites
Before continuing, you should know how to download, install and run WildFly. For more
information on these steps, refer here: Getting Started Guide.

1.2. Examples in this guide
The examples in this guide are largely expressed as XML configuration file excerpts, or by using a
representation of the de-typed management model.

2

Getting_Started_Guide.html

Chapter 2. Core management concepts

2.1. Operating mode
WildFly can be booted in two different modes. A managed domain allows you to run and manage a
multi-server topology. Alternatively, you can run a standalone server instance.

2.1.1. Standalone Server

For many use cases, the centralized management capability available via a managed domain is not
necessary. For these use cases, a WildFly instance can be run as a "standalone server". A standalone
server instance is an independent process, much like an JBoss Application Server 3, 4, 5, or 6
instance is. Standalone instances can be launched via the standalone.sh or standalone.bat launch
scripts.

If more than one standalone instance is launched and multi-server management is desired, it is the
user’s responsibility to coordinate management across the servers. For example, to deploy an
application across all of the standalone servers, the user would need to individually deploy the
application on each server.

It is perfectly possible to launch multiple standalone server instances and have them form an HA
cluster, just like it was possible with JBoss Application Server 3, 4, 5 and 6.

2.1.2. Managed Domain

One of the primary new features of WildFly is the ability to manage multiple WildFly instances
from a single control point. A collection of such servers is referred to as the members of a "domain"
with a single Domain Controller process acting as the central management control point. All of the
WildFly instances in the domain share a common management policy, with the Domain Controller
acting to ensure that each server is configured according to that policy. Domains can span multiple
physical (or virtual) machines, with all WildFly instances on a given host under the control of a
special Host Controller process. One Host Controller instance is configured to act as the central
Domain Controller. The Host Controller on each host interacts with the Domain Controller to
control the lifecycle of the application server instances running on its host and to assist the Domain
Controller in managing them.

When you launch a WildFly managed domain on a host (via the domain.sh or domain.bat launch
scripts) your intent is to launch a Host Controller and usually at least one WildFly instance. On one
of the hosts the Host Controller should be configured to act as the Domain Controller. See Domain
Setup for details.

The following is an example managed domain topology:

3

Domain_Setup.html
Domain_Setup.html

Host

Each "Host" box in the above diagram represents a physical or virtual host. A physical host can
contain zero, one or more server instances.

Host Controller

When the domain.sh or domain.bat script is run on a host, a process known as a Host Controller is
launched. The Host Controller is solely concerned with server management; it does not itself handle
application server workloads. The Host Controller is responsible for starting and stopping the
individual application server processes that run on its host, and interacts with the Domain
Controller to help manage them.

Each Host Controller by default reads its configuration from the domain/configuration/host.xml file
located in the unzipped WildFly installation on its host’s filesystem. The host.xml file contains
configuration information that is specific to the particular host. Primarily:

• the listing of the names of the actual WildFly instances that are meant to run off of this
installation.

• configuration of how the Host Controller is to contact the Domain Controller to register itself
and access the domain configuration. This may either be configuration of how to find and
contact a remote Domain Controller, or a configuration telling the Host Controller to itself act as
the Domain Controller.

4

• configuration of items that are specific to the local physical installation. For example, named
interface definitions declared in domain.xml (see below) can be mapped to an actual machine-
specific IP address in host.xml. Abstract path names in domain.xml can be mapped to actual
filesystem paths in host.xml.

Domain Controller

One Host Controller instance is configured to act as the central management point for the entire
domain, i.e. to be the Domain Controller. The primary responsibility of the Domain Controller is to
maintain the domain’s central management policy, to ensure all Host Controllers are aware of its
current contents, and to assist the Host Controllers in ensuring any running application server
instances are configured in accordance with this policy. This central management policy is stored
by default in the domain/configuration/domain.xml file in the unzipped WildFly installation on
Domain Controller’s host’s filesystem.

A domain.xml file must be located in the domain/configuration directory of an installation that’s
meant to run the Domain Controller. It does not need to be present in installations that are not
meant to run a Domain Controller; i.e. those whose Host Controller is configured to contact a
remote Domain Controller. The presence of a domain.xml file on such a server does no harm.

The domain.xml file includes, among other things, the configuration of the various "profiles" that
WildFly instances in the domain can be configured to run. A profile configuration includes the
detailed configuration of the various subsystems that comprise that profile (e.g. an embedded JBoss
Web instance is a subsystem; a JBoss TS transaction manager is a subsystem, etc). The domain
configuration also includes the definition of groups of sockets that those subsystems may open. The
domain configuration also includes the definition of "server groups":

Server Group

A server group is set of server instances that will be managed and configured as one. In a managed
domain each application server instance is a member of a server group. (Even if the group only has
a single server, the server is still a member of a group.) It is the responsibility of the Domain
Controller and the Host Controllers to ensure that all servers in a server group have a consistent
configuration. They should all be configured with the same profile and they should have the same
deployment content deployed.

The domain can have multiple server groups. The above diagram shows two server groups,
"ServerGroupA" and "ServerGroupB". Different server groups can be configured with different
profiles and deployments; for example in a domain with different tiers of servers providing
different services. Different server groups can also run the same profile and have the same
deployments; for example to support rolling application upgrade scenarios where a complete
service outage is avoided by first upgrading the application on one server group and then
upgrading a second server group.

An example server group definition is as follows:

5

<server-group name="main-server-group" profile="default">
 <socket-binding-group ref="standard-sockets"/>
 <deployments>
 <deployment name="foo.war_v1" runtime-name="foo.war" />
 <deployment name="bar.ear" runtime-name="bar.ear" />
 </deployments>
</server-group>

A server-group configuration includes the following required attributes:

• name — the name of the server group

• profile — the name of the profile the servers in the group should run

In addition, the following optional elements are available:

• socket-binding-group — specifies the name of the default socket binding group to use on servers
in the group. Can be overridden on a per-server basis in host.xml. If not provided in the server-
group element, it must be provided for each server in host.xml.

• deployments — the deployment content that should be deployed on the servers in the group.

• deployment-overlays — the overlays and their associated deployments.

• system-properties — system properties that should be set on all servers in the group

• jvm — default jvm settings for all servers in the group. The Host Controller will merge these
settings with any provided in host.xml to derive the settings to use to launch the server’s JVM.
See JVM settings for further details.

Server

Each "Server" in the above diagram represents an actual application server instance. The server
runs in a separate JVM process from the Host Controller. The Host Controller is responsible for
launching that process. (In a managed domain the end user cannot directly launch a server process
from the command line.)

The Host Controller synthesizes the server’s configuration by combining elements from the domain
wide configuration (from domain.xml) and the host-specific configuration (from host.xml).

2.1.3. Deciding between running standalone servers or a managed domain

Which use cases are appropriate for managed domain and which are appropriate for standalone
servers? A managed domain is all about coordinated multi-server management — with it WildFly
provides a central point through which users can manage multiple servers, with rich capabilities to
keep those servers' configurations consistent and the ability to roll out configuration changes
(including deployments) to the servers in a coordinated fashion.

It’s important to understand that the choice between a managed domain and standalone servers is
all about how your servers are managed, not what capabilities they have to service end user
requests. This distinction is particularly important when it comes to high availability clusters. It’s
important to understand that HA functionality is orthogonal to running standalone servers or a

6

JVM_settings.html

managed domain. That is, a group of standalone servers can be configured to form an HA cluster.
The domain and standalone modes determine how the servers are managed, not what capabilities
they provide.

So, given all that:

• A single server installation gains nothing from running in a managed domain, so running a
standalone server is a better choice.

• For multi-server production environments, the choice of running a managed domain versus
standalone servers comes down to whether the user wants to use the centralized management
capabilities a managed domain provides. Some enterprises have developed their own
sophisticated multi-server management capabilities and are comfortable coordinating changes
across a number of independent WildFly instances. For these enterprises, a multi-server
architecture comprised of individual standalone servers is a good option.

• Running a standalone server is better suited for most development scenarios. Any individual
server configuration that can be achieved in a managed domain can also be achieved in a
standalone server, so even if the application being developed will eventually run in production
on a managed domain installation, much (probably most) development can be done using a
standalone server.

• Running a managed domain mode can be helpful in some advanced development scenarios; i.e.
those involving interaction between multiple WildFly instances. Developers may find that
setting up various servers as members of a domain is an efficient way to launch a multi-server
cluster.

2.2. General configuration concepts
For both a managed domain or a standalone server, a number of common configuration concepts
apply:

2.2.1. Extensions

An extension is a module that extends the core capabilities of the server. The WildFly core is very
simple and lightweight; most of the capabilities people associate with an application server are
provided via extensions. An extension is packaged as a module in the modules folder. The user
indicates that they want a particular extension to be available by including an <extension/> element
naming its module in the domain.xml or standalone.xml file.

<extensions>
 [...]
 <extension module="org.jboss.as.transactions"/>
 <extension module="org.jboss.as.webservices" />
 <extension module="org.jboss.as.weld" />
 [...]
 <extension module="org.wildfly.extension.undertow"/>
</extensions>

7

2.2.2. Profiles and Subsystems

The most significant part of the configuration in domain.xml and standalone.xml is the configuration
of one (in standalone.xml) or more (in domain.xml) "profiles". A profile is a named set of subsystem
configurations. A subsystem is an added set of capabilities added to the core server by an extension
(see "Extensions" above). A subsystem provides servlet handling capabilities; a subsystem provides
an EJB container; a subsystem provides JTA, etc. A profile is a named list of subsystems, along with
the details of each subsystem’s configuration. A profile with a large number of subsystems results
in a server with a large set of capabilities. A profile with a small, focused set of subsystems will
have fewer capabilities but a smaller footprint.

The content of an individual profile configuration looks largely the same in domain.xml and
standalone.xml. The only difference is standalone.xml is only allowed to have a single profile
element (the profile the server will run), while domain.xml can have many profiles, each of which
can be mapped to one or more groups of servers.

The contents of individual subsystem configurations look exactly the same between domain.xml and
standalone.xml.

2.2.3. Paths

A logical name for a filesystem path. The domain.xml, host.xml and standalone.xml configurations all
include a section where paths can be declared. Other sections of the configuration can then
reference those paths by their logical name, rather than having to include the full details of the
path (which may vary on different machines). For example, the logging subsystem configuration
includes a reference to the " `jboss.server.log.dir`" path that points to the server’s " `log`"
directory.

<file relative-to="jboss.server.log.dir" path="server.log"/>

WildFly automatically provides a number of standard paths without any need for the user to
configure them in a configuration file:

• jboss.home.dir - the root directory of the WildFly distribution

• user.home - user’s home directory

• user.dir - user’s current working directory

• java.home - java installation directory

• jboss.server.base.dir - root directory for an individual server instance

• jboss.server.config.dir - directory the server will use for configuration file storage

• jboss.server.data.dir - directory the server will use for persistent data file storage

• jboss.server.log.dir - directory the server will use for log file storage

• jboss.server.temp.dir - directory the server will use for temporary file storage

• jboss.controller.temp.dir - directory the server will use for temporary file storage

• jboss.domain.servers.dir - directory under which a host controller will create the working area

8

for individual server instances (managed domain mode only)

Users can add their own paths or override all except the first 5 of the above by adding a <path/>
element to their configuration file.

<path name="example" path="example" relative-to="jboss.server.data.dir"/>

The attributes are:

• name — the name of the path.

• path — the actual filesystem path. Treated as an absolute path, unless the 'relative-to' attribute is
specified, in which case the value is treated as relative to that path.

• relative-to — (optional) the name of another previously named path, or of one of the standard
paths provided by the system.

A <path/> element in a domain.xml need not include anything more than the name attribute; i.e. it
need not include any information indicating what the actual filesystem path is:

<path name="x"/>

Such a configuration simply says, "There is a path named 'x' that other parts of the domain.xml
configuration can reference. The actual filesystem location pointed to by 'x' is host-specific and will
be specified in each machine’s host.xml file." If this approach is used, there must be a path element
in each machine’s host.xml that specifies what the actual filesystem path is:

<path name="x" path="/var/x" />

A <path/> element in a standalone.xml must include the specification of the actual filesystem path.

2.2.4. Interfaces

A logical name for a network interface/IP address/host name to which sockets can be bound. The
domain.xml, host.xml and standalone.xml configurations all include a section where interfaces can be
declared. Other sections of the configuration can then reference those interfaces by their logical
name, rather than having to include the full details of the interface (which may vary on different
machines). An interface configuration includes the logical name of the interface as well as
information specifying the criteria to use for resolving the actual physical address to use. See
Interfaces and ports for further details.

An <interface/> element in a domain.xml need not include anything more than the name attribute; i.e.
it need not include any information indicating what the actual IP address associated with the name
is:

<interface name="internal"/>

9

Interfaces_and_ports.html

Such a configuration simply says, "There is an interface named 'internal' that other parts of the
domain.xml configuration can reference. The actual IP address pointed to by 'internal' is host-
specific and will be specified in each machine’s host.xml file." If this approach is used, there must
be an interface element in each machine’s host.xml that specifies the criteria for determining the IP
address:

<interface name="internal">
 <nic name="eth1"/>
</interface>

An <interface/> element in a standalone.xml must include the criteria for determining the IP
address.

2.2.5. Socket Bindings and Socket Binding Groups

A socket binding is a named configuration for a socket.

The domain.xml and standalone.xml configurations both include a section where named socket
configurations can be declared. Other sections of the configuration can then reference those sockets
by their logical name, rather than having to include the full details of the socket configuration
(which may vary on different machines). See Interfaces and ports for full details.

2.2.6. System Properties

System property values can be set in a number of places in domain.xml, host.xml and standalone.xml.
The values in standalone.xml are set as part of the server boot process. Values in domain.xml and
host.xml are applied to servers when they are launched.

When a system property is configured in domain.xml or host.xml, the servers it ends up being
applied to depends on where it is set. Setting a system property in a child element directly under
the domain.xml root results in the property being set on all servers. Setting it in a <system-property/>
element inside a <server-group/> element in domain.xml results in the property being set on all
servers in the group. Setting it in a child element directly under the host.xml root results in the
property being set on all servers controlled by that host’s Host Controller. Finally, setting it in a
<system-property/> element inside a <server/> element in host.xml result in the property being set
on that server. The same property can be configured in multiple locations, with a value in a
<server/> element taking precedence over a value specified directly under the host.xml root
element, the value in a host.xml taking precedence over anything from domain.xml, and a value in a
<server-group/> element taking precedence over a value specified directly under the domain.xml
root element.

2.3. Management resources
When WildFly parses your configuration files at boot, or when you use one of the AS’s Management
Clients you are adding, removing or modifying management resources in the AS’s internal
management model. A WildFly management resource has the following characteristics:

10

Interfaces_and_ports.html
Management_Clients.html
Management_Clients.html

2.3.1. Address

All WildFly management resources are organized in a tree. The path to the node in the tree for a
particular resource is its address. Each segment in a resource’s address is a key/value pair:

• The key is the resource’s type, in the context of its parent. So, for example, the root resource for
a standalone server has children of type subsystem, interface, socket-binding, etc. The resource
for the subsystem that provides the AS’s webserver capability has children of type connector
and virtual-server. The resource for the subsystem that provides the AS’s messaging server
capability has, among others, children of type jms-queue and jms-topic.

• The value is the name of a particular resource of the given type, e.g web or messaging for
subsystems or http or https for web subsystem connectors.

The full address for a resource is the ordered list of key/value pairs that lead from the root of the
tree to the resource. Typical notation is to separate the elements in the address with a '/' and to
separate the key and the value with an '=':

• /subsystem=undertow/server=default-server/http-listener=default

• /subsystem=messaging/jms-queue=testQueue

• /interface=public

When using the HTTP API, a '/' is used to separate the key and the value instead of an '=':

• http://localhost:9990/management/subsystem/undertow/server/default-server/http-listener/
default

• http://localhost:9990/management/subsystem/messaging/jms-queue/testQueue

• http://localhost:9990/management/interface/public

2.3.2. Operations

Querying or modifying the state of a resource is done via an operation. An operation has the
following characteristics:

• A string name

• Zero or more named parameters. Each parameter has a string name, and a value of type
org.jboss.dmr.ModelNode (or, when invoked via the CLI, the text representation of a ModelNode;
when invoked via the HTTP API, the JSON representation of a ModelNode.) Parameters may be
optional.

• A return value, which will be of type org.jboss.dmr.ModelNode (or, when invoked via the CLI, the
text representation of a ModelNode; when invoked via the HTTP API, the JSON representation of a
ModelNode.)

Every resource except the root resource will have an add operation and should have a remove
operation ("should" because in WildFly 11 many do not). The parameters for the add operation vary
depending on the resource. The remove operation has no parameters.

There are also a number of "global" operations that apply to all resources. See Global operations for
full details.

11

http://localhost:9990/management/subsystem/undertow/server/default-server/http-listener/default
http://localhost:9990/management/subsystem/undertow/server/default-server/http-listener/default
http://localhost:9990/management/subsystem/undertow/server/default-server/http-listener/default
http://localhost:9990/management/subsystem/undertow/server/default-server/http-listener/default
http://localhost:9990/management/subsystem/undertow/server/default-server/http-listener/default
http://localhost:9990/management/subsystem/undertow/server/default-server/http-listener/default
http://localhost:9990/management/subsystem/undertow/server/default-server/http-listener/default
http://localhost:9990/management/subsystem/undertow/server/default-server/http-listener/default
http://localhost:9990/management/subsystem/undertow/server/default-server/http-listener/default
http://localhost:9990/management/subsystem/undertow/server/default-server/http-listener/default
http://localhost:9990/management/subsystem/undertow/server/default-server/http-listener/default
http://localhost:9990/management/subsystem/undertow/server/default-server/http-listener/default
http://localhost:9990/management/subsystem/undertow/server/default-server/http-listener/default
http://localhost:9990/management/subsystem/undertow/server/default-server/http-listener/default
http://localhost:9990/management/subsystem/undertow/server/default-server/http-listener/default
http://localhost:9990/management/subsystem/messaging/jms-queue/testQueue
http://localhost:9990/management/subsystem/messaging/jms-queue/testQueue
http://localhost:9990/management/subsystem/messaging/jms-queue/testQueue
http://localhost:9990/management/subsystem/messaging/jms-queue/testQueue
http://localhost:9990/management/subsystem/messaging/jms-queue/testQueue
http://localhost:9990/management/subsystem/messaging/jms-queue/testQueue
http://localhost:9990/management/subsystem/messaging/jms-queue/testQueue
http://localhost:9990/management/subsystem/messaging/jms-queue/testQueue
http://localhost:9990/management/subsystem/messaging/jms-queue/testQueue
http://localhost:9990/management/subsystem/messaging/jms-queue/testQueue
http://localhost:9990/management/subsystem/messaging/jms-queue/testQueue
http://localhost:9990/management/interface/public
http://localhost:9990/management/interface/public
http://localhost:9990/management/interface/public
http://localhost:9990/management/interface/public
http://localhost:9990/management/interface/public
http://localhost:9990/management/interface/public
http://localhost:9990/management/interface/public
Global_operations.adoc

The operations a resource supports can themselves be determined by invoking an operation: the
read-operation-names operation. Once the name of an operation is known, details about its
parameters and return value can be determined by invoking the read-operation-description
operation. For example, to learn the names of the operations exposed by the root resource for a
standalone server, and then learn the full details of one of them, via the CLI one would:

[standalone@localhost:9990 /] :read-operation-names
{
 "outcome" => "success",
 "result" => [
 "add-namespace",
 "add-schema-location",
 "delete-snapshot",
 "full-replace-deployment",
 "list-snapshots",
 "read-attribute",
 "read-children-names",
 "read-children-resources",
 "read-children-types",
 "read-config-as-xml",
 "read-operation-description",
 "read-operation-names",
 "read-resource",
 "read-resource-description",
 "reload",
 "remove-namespace",
 "remove-schema-location",
 "replace-deployment",
 "shutdown",
 "take-snapshot",
 "upload-deployment-bytes",
 "upload-deployment-stream",
 "upload-deployment-url",
 "validate-address",
 "write-attribute"
]
}
[standalone@localhost:9990 /] :read-operation-description(name=upload-deployment-url)
{
 "outcome" => "success",
 "result" => {
 "operation-name" => "upload-deployment-url",
 "description" => "Indicates that the deployment content available at the
included URL should be added to the deployment content repository. Note that this
operation does not indicate the content should be deployed into the runtime.",
 "request-properties" => {"url" => {
 "type" => STRING,
 "description" => "The URL at which the deployment content is available for
upload to the domain's or standalone server's deployment content repository.. Note
that the URL must be accessible from the target of the operation (i.e. the Domain

12

Controller or standalone server).",
 "required" => true,
 "min-length" => 1,
 "nillable" => false
 }},
 "reply-properties" => {
 "type" => BYTES,
 "description" => "The hash of managed deployment content that has been
uploaded to the domain's or standalone server's deployment content repository.",
 "min-length" => 20,
 "max-length" => 20,
 "nillable" => false
 }
 }
}

See #Descriptions below for more on how to learn about the operations a resource exposes.

2.3.3. Attributes

Management resources expose information about their state as attributes. Attributes have string
name, and a value of type org.jboss.dmr.ModelNode (or: for the CLI, the text representation of a
ModelNode; for HTTP API, the JSON representation of a ModelNode.)

Attributes can either be read-only or read-write. Reading and writing attribute values is done via
the global read-attribute and write-attribute operations.

The read-attribute operation takes a single parameter "name" whose value is a the name of the
attribute. For example, to read the "port" attribute of a socket-binding resource via the CLI:

[standalone@localhost:9990 /] /socket-binding-group=standard-sockets/socket-binding
=https:read-attribute(name=port)
{
 "outcome" => "success",
 "result" => 8443
}

If an attribute is writable, the write-attribute operation is used to mutate its state. The operation
takes two parameters:

• name – the name of the attribute

• value – the value of the attribute

For example, to read the "port" attribute of a socket-binding resource via the CLI:

13

#descriptions

[standalone@localhost:9990 /] /socket-binding-group=standard-sockets/socket-binding
=https:write-attribute(name=port,value=8444)
{"outcome" => "success"}

Attributes can have one of two possible storage types:

• CONFIGURATION – means the value of the attribute is stored in the persistent configuration;
i.e. in the domain.xml, host.xml or standalone.xml file from which the resource’s configuration
was read.

• RUNTIME – the attribute value is only available from a running server; the value is not stored
in the persistent configuration. A metric (e.g. number of requests serviced) is a typical example
of a RUNTIME attribute.

The values of all of the attributes a resource exposes can be obtained via the read-resource
operation, with the "include-runtime" parameter set to "true". For example, from the CLI:

14

[standalone@localhost:9990 /] /subsystem=undertow/server=default-server/http-listener
=default:read-resource(include-runtime=true)
{
 "outcome" => "success",
 "result" => {
 "allow-encoded-slash" => false,
 "allow-equals-in-cookie-value" => false,
 "always-set-keep-alive" => true,
 "buffer-pipelined-data" => true,
 "buffer-pool" => "default",
 "bytes-received" => 0L,
 "bytes-sent" => 0L,
 "certificate-forwarding" => false,
 "decode-url" => true,
 "disallowed-methods" => ["TRACE"],
 "enable-http2" => false,
 "enabled" => true,
 "error-count" => 0L,
 "max-buffered-request-size" => 16384,
 "max-connections" => undefined,
 "max-cookies" => 200,
 "max-header-size" => 1048576,
 "max-headers" => 200,
 "max-parameters" => 1000,
 "max-post-size" => 10485760L,
 "max-processing-time" => 0L,
 "no-request-timeout" => undefined,
 "processing-time" => 0L,
 "proxy-address-forwarding" => false,
 "read-timeout" => undefined,
 "receive-buffer" => undefined,
 "record-request-start-time" => false,
 "redirect-socket" => "https",
 "request-count" => 0L,
 "request-parse-timeout" => undefined,
 "resolve-peer-address" => false,
 "send-buffer" => undefined,
 "socket-binding" => "http",
 "tcp-backlog" => undefined,
 "tcp-keep-alive" => undefined,
 "url-charset" => "UTF-8",
 "worker" => "default",
 "write-timeout" => undefined
 }
}

Omit the "include-runtime" parameter (or set it to "false") to limit output to those attributes whose
values are stored in the persistent configuration:

15

[standalone@localhost:9990 /] /subsystem=undertow/server=default-server/http-listener
=default:read-resource(include-runtime=false
{
 "outcome" => "success",
 "result" => {
 "allow-encoded-slash" => false,
 "allow-equals-in-cookie-value" => false,
 "always-set-keep-alive" => true,
 "buffer-pipelined-data" => true,
 "buffer-pool" => "default",
 "certificate-forwarding" => false,
 "decode-url" => true,
 "disallowed-methods" => ["TRACE"],
 "enable-http2" => false,
 "enabled" => true,
 "max-buffered-request-size" => 16384,
 "max-connections" => undefined,
 "max-cookies" => 200,
 "max-header-size" => 1048576,
 "max-headers" => 200,
 "max-parameters" => 1000,
 "max-post-size" => 10485760L,
 "no-request-timeout" => undefined,
 "proxy-address-forwarding" => false,
 "read-timeout" => undefined,
 "receive-buffer" => undefined,
 "record-request-start-time" => false,
 "redirect-socket" => "https",
 "request-parse-timeout" => undefined,
 "resolve-peer-address" => false,
 "send-buffer" => undefined,
 "socket-binding" => "http",
 "tcp-backlog" => undefined,
 "tcp-keep-alive" => undefined,
 "url-charset" => "UTF-8",
 "worker" => "default",
 "write-timeout" => undefined
 }
}

See #Descriptions below for how to learn more about the attributes a particular resource exposes.

2.3.4. Children

Management resources may support child resources. The types of children a resource supports (e.g.
connector for the web subsystem resource) can be obtained by querying the resource’s description
(see #Descriptions below) or by invoking the read-children-types operation. Once you know the
legal child types, you can query the names of all children of a given type by using the global read-
children-types operation. The operation takes a single parameter "child-type" whose value is the

16

#src-557064_Managementresources-Descriptions
#src-557064_Managementresources-Address
#src-557064_Managementresources-Address
#src-557064_Managementresources-Descriptions

type. For example, a resource representing a socket binding group has children. To find the type of
those children and the names of resources of that type via the CLI one could:

[standalone@localhost:9990 /] /socket-binding-group=standard-sockets:read-children-
types
{
 "outcome" => "success",
 "result" => ["socket-binding"]
}
[standalone@localhost:9990 /] /socket-binding-group=standard-sockets:read-children-
names(child-type=socket-binding)
{
 "outcome" => "success",
 "result" => [
 "http",
 "https",
 "jmx-connector-registry",
 "jmx-connector-server",
 "jndi",
 "osgi-http",
 "remoting",
 "txn-recovery-environment",
 "txn-status-manager"
]
}

2.3.5. Descriptions

All resources expose metadata that describes their attributes, operations and child types. This
metadata is itself obtained by invoking one or more of the global operations each resource
supports. We showed examples of the read-operation-names, read-operation-description, read-
children-types and read-children-names operations above.

The read-resource-description operation can be used to find the details of the attributes and child
types associated with a resource. For example, using the CLI:

17

Global_operations.adoc

[standalone@localhost:9990 /] /socket-binding-group=standard-sockets:read-resource-
description
{
 "outcome" => "success",
 "result" => {
 "description" => "Contains a list of socket configurations.",
 "head-comment-allowed" => true,
 "tail-comment-allowed" => false,
 "attributes" => {
 "name" => {
 "type" => STRING,
 "description" => "The name of the socket binding group.",
 "required" => true,
 "head-comment-allowed" => false,
 "tail-comment-allowed" => false,
 "access-type" => "read-only",
 "storage" => "configuration"
 },
 "default-interface" => {
 "type" => STRING,
 "description" => "Name of an interface that should be used as the
interface for any sockets that do not explicitly declare one.",
 "required" => true,
 "head-comment-allowed" => false,
 "tail-comment-allowed" => false,
 "access-type" => "read-write",
 "storage" => "configuration"
 },
 "port-offset" => {
 "type" => INT,
 "description" => "Increment to apply to the base port values defined
in the socket bindings to derive the runtime values to use on this server.",
 "required" => false,
 "head-comment-allowed" => true,
 "tail-comment-allowed" => false,
 "access-type" => "read-write",
 "storage" => "configuration"
 }
 },
 "operations" => {},
 "children" => {"socket-binding" => {
 "description" => "The individual socket configurtions.",
 "min-occurs" => 0,
 "model-description" => undefined
 }}
 }
}

Note the "operations" ⇒ }} in the output above. If the command had included the {{operations

parameter (i.e. /socket-binding-group=standard-sockets:read-resource-

18

description(operations=true)) the output would have included the description of each operation
supported by the resource.

See the Global operations section for details on other parameters supported by the read-resource-
description operation and all the other globally available operations.

2.3.6. Comparison to JMX MBeans

WildFly management resources are conceptually quite similar to Open MBeans. They have the
following primary differences:

• WildFly management resources are organized in a tree structure. The order of the key value
pairs in a resource’s address is significant, as it defines the resource’s position in the tree. The
order of the key properties in a JMX ObjectName is not significant.

• In an Open MBean attribute values, operation parameter values and operation return values
must either be one of the simple JDK types (String, Boolean, Integer, etc) or implement either
the javax.management.openmbean.CompositeData interface or the
javax.management.openmbean.TabularData interface. WildFly management resource attribute
values, operation parameter values and operation return values are all of type
org.jboss.dmr.ModelNode.

2.3.7. Basic structure of the management resource trees

As noted above, management resources are organized in a tree structure. The structure of the tree
depends on whether you are running a standalone server or a managed domain.

Standalone server

The structure of the managed resource tree is quite close to the structure of the standalone.xml
configuration file.

• The root resource

◦ extension – extensions installed in the server

◦ path – paths available on the server

◦ system-property – system properties set as part of the configuration (i.e. not on the command
line)

◦ core-service=management – the server’s core management services

◦ core-service=service-container – resource for the JBoss MSC ServiceContainer that’s at the
heart of the AS

◦ subsystem – the subsystems installed on the server. The bulk of the management model will
be children of type subsystem

◦ interface – interface configurations

◦ socket-binding-group – the central resource for the server’s socket bindings

▪ socket-binding – individual socket binding configurations

◦ deployment – available deployments on the server

19

Global_operations.adoc

Managed domain

In a managed domain, the structure of the managed resource tree spans the entire domain,
covering both the domain wide configuration (e.g. what’s in domain.xml, the host specific
configuration for each host (e.g. what’s in host.xml, and the resources exposed by each running
application server. The Host Controller processes in a managed domain provide access to all or part
of the overall resource tree. How much is available depends on whether the management client is
interacting with the Host Controller that is acting as the master Domain Controller. If the Host
Controller is the master Domain Controller, then the section of the tree for each host is available. If
the Host Controller is a slave to a remote Domain Controller, then only the portion of the tree
associated with that host is available.

• The root resource for the entire domain. The persistent configuration associated with this
resource and its children, except for those of type host, is persisted in the domain.xml file on the
Domain Controller.

◦ extension – extensions available in the domain

◦ path – paths available on across the domain

◦ system-property – system properties set as part of the configuration (i.e. not on the command
line) and available across the domain

◦ profile – sets of subsystem configurations that can be assigned to server groups

▪ subsystem – configuration of subsystems that are part of the profile

◦ interface – interface configurations

◦ socket-binding-group – sets of socket bindings configurations that can be applied to server
groups

▪ socket-binding – individual socket binding configurations

◦ deployment – deployments available for assignment to server groups

◦ deployment-overlay — deployment-overlays content available to overlay deployments in
server groups

◦ server-group – server group configurations

◦ host – the individual Host Controllers. Each child of this type represents the root resource
for a particular host. The persistent configuration associated with one of these resources or
its children is persisted in the host’s host.xml file.

▪ path – paths available on each server on the host

▪ system-property – system properties to set on each server on the host

▪ core-service=management – the Host Controller’s core management services

▪ interface – interface configurations that apply to the Host Controller or servers on the
host

▪ jvm – JVM configurations that can be applied when launching servers

▪ server-config – configuration describing how the Host Controller should launch a server;
what server group configuration to use, and any server-specific overrides of items
specified in other resources

20

▪ server – the root resource for a running server. Resources from here and below are not
directly persisted; the domain-wide and host level resources contain the persistent
configuration that drives a server

▪ extension – extensions installed in the server

▪ path – paths available on the server

▪ system-property – system properties set as part of the configuration (i.e. not on the
command line)

▪ core-service=management – the server’s core management services

▪ core-service=service-container – resource for the JBoss MSC ServiceContainer that’s
at the heart of the AS

▪ subsystem – the subsystems installed on the server. The bulk of the management
model will be children of type subsystem

▪ interface – interface configurations

▪ socket-binding-group – the central resource for the server’s socket bindings

▪ socket-binding – individual socket binding configurations

▪ deployment – available deployments on the server

▪ deployment-overlay — available overlays on the server

21

Chapter 3. Management Clients
WildFly offers three different approaches to configure and manage servers: a web interface, a
command line client and a set of XML configuration files. Regardless of the approach you choose,
the configuration is always synchronized across the different views and finally persisted to the
XML files.

3.1. Web Management Interface
The web interface is a GWT application that uses the HTTP management API to configure a
management domain or standalone server.

3.1.1. HTTP Management Endpoint

The HTTP API endpoint is the entry point for management clients that rely on the HTTP protocol to
integrate with the management layer. It uses a JSON encoded protocol and a de-typed, RPC style API
to describe and execute management operations against a managed domain or standalone server.
It’s used by the web console, but offers integration capabilities for a wide range of other clients too.

The HTTP API endpoint is co-located with either the domain controller or a standalone server. By
default, it runs on port 9990:

<management-interfaces>
 [...]
 <http-interface security-realm="ManagementRealm">
 <socket-binding http="management-http"/>
 </http-interface>
<management-interfaces>

~(See standalone/configuration/standalone.xml or domain/configuration/host.xml)~

The HTTP API Endpoint serves two different contexts. One for executing management operations
and another one that allows you to access the web interface:

• Domain API: http://<host>:9990/management

• Web Console: http://<host>:9990/console

3.1.2. Accessing the web console

The web console is served through the same port as the HTTP management API. It can be accessed
by pointing your browser to:

• http://<host>:9990/console

Default URL

 By default the web interface can be accessed here: http://localhost:9990/console.

22

http://<host>:9990/management
http://<host>:9990/console
http://<host>:9990/console
http://localhost:9990/console

3.2. Default HTTP Interface Security
WildFly is distributed secured by default. The default security mechanism is username / password
based making use of HTTP Digest for the authentication process.

The reason for securing the server by default is so that if the management interfaces are
accidentally exposed on a public IP address authentication is required to connect - for this reason
there is no default user in the distribution.

If you attempt to connect to the admin console before you have added a user to the server you will
be presented with the following screen.

The user are stored in a properties file called mgmt-users.properties under
standalone/configuration and domain/configuration depending on the running mode of the server,
these files contain the users username along with a pre-prepared hash of the username along with
the name of the realm and the users password.

Although the properties files do not contain the plain text passwords they should
still be guarded as the pre-prepared hashes could be used to gain access to any
server with the same realm if the same user has used the same password.

To manipulate the files and add users we provide a utility add-user.sh and add-user.bat to add the
users and generate the hashes, to add a user you should execute the script and follow the guided
process.

23

The full details of the add-user utility are described later but for the purpose of accessing the
management interface you need to enter the following values: -

• Type of user - This will be a 'Management User' to selection option a.

• Realm - This MUST match the realm name used in the configuration so unless you have changed
the configuration to use a different realm name leave this set as 'ManagementRealm'.

• Username - The username of the user you are adding.

• Password - The users password.

Provided the validation passes you will then be asked to confirm you want to add the user and the
properties files will be updated.

For the final question, as this is a user that is going to be accessing the admin console just answer 'n'
- this option will be described later for adding slave host controllers that authenticate against a
master domain controller but that is a later topic.

Updates to the properties file are picked up in real time so either click 'Try Again' on the error page
that was displayed in the browser or navigate to the console again and you should then be
prompted to enter the username and password to connect to the server.

3.3. Default Native Interface Security
The native interface shares the same security configuration as the http interface, however we also
support a local authentication mechanism which means that the CLI can authenticate against the
local WildFly instance without prompting the user for a username and password. This mechanism
only works if the user running the CLI has read access to the standalone/tmp/auth folder or
domain/tmp/auth folder under the respective WildFly installation - if the local mechanism fails then

24

the CLI will fallback to prompting for a username and password for a user configured as in Default
HTTP Interface Security.

Establishing a CLI connection to a remote server will require a username and password by default.

3.4. Command Line Interface
The Command Line Interface (CLI) is a management tool for a managed domain or standalone
server. It allows a user to connect to the domain controller or a standalone server and execute
management operations available through the de-typed management model.

Details on how to use the CLI can be found in the Command Line Interface page.

3.5. Configuration Files
WildFly stores its configuration in centralized XML configuration files, one per server for
standalone servers and, for managed domains, one per host with an additional domain wide policy
controlled by the master host. These files are meant to be human-readable and human editable.

The XML configuration files act as a central, authoritative source of configuration.
Any configuration changes made via the web interface or the CLI are persisted
back to the XML configuration files. If a domain or standalone server is offline, the
XML configuration files can be hand edited as well, and any changes will be picked
up when the domain or standalone server is next started. However, users are
encouraged to use the web interface or the CLI in preference to making offline
edits to the configuration files. External changes made to the configuration files
while processes are running will not be detected, and may be overwritten.

3.5.1. Standalone Server Configuration File

The XML configuration for a standalone server can be found in the standalone/configuration
directory. The default configuration file is standalone/configuration/standalone.xml.

The standalone/configuration directory includes a number of other standard configuration files, e.g.
standalone-full.xml, standalone-ha.xml and standalone-full-ha.xml each of which is similar to the
default standalone.xml file but includes additional subsystems not present in the default
configuration. If you prefer to use one of these files as your server configuration, you can specify it
with the [line-through]*c* or -server-config command line argument:

• bin/standalone.sh -c=standalone-full.xml

• bin/standalone.sh --server-config=standalone-ha.xml

3.5.2. Managed Domain Configuration Files

In a managed domain, the XML files are found in the domain/configuration directory. There are two
types of configuration files – one per host, and then a single domain-wide file managed by the
master host, aka the Domain Controller. (For more on the types of processes in a managed domain,
see Operating Modes.)

25

#Default-HTTP-Interface-Security
#Default-HTTP-Interface-Security
Command_Line_Interface.adoc
Operating_modes.adoc

Host Specific Configuration – host.xml

When you start a managed domain process, a Host Controller instance is launched, and it parses its
own configuration file to determine its own configuration, how it should integrate with the rest of
the domain, any host-specific values for settings in the domain wide configuration (e.g. IP
addresses) and what servers it should launch. This information is contained in the host-specific
configuration file, the default version of which is domain/configuration/host.xml.

Each host will have its own variant host.xml, with settings appropriate for its role in the domain.
WildFly ships with three standard variants:

host-master.xml A configuration that specifies the Host
Controller should become the master, aka the
Domain Controller. No servers will be started
by this Host Controller, which is a
recommended setup for a production master.

host-slave.xml A configuration that specifies the Host
Controller should not become master and
instead should register with a remote master
and be controlled by it. This configuration
launches servers, although a user will likely
wish to modify how many servers are launched
and what server groups they belong to.

host.xml The default host configuration, tailored for an
easy out of the box experience experimenting
with a managed domain. This configuration
specifies the Host Controller should become the
master, aka the Domain Controller, but it also
launches a couple of servers.

Which host-specific configuration should be used can be controlled via the _ --host-config_
command line argument:

$ bin/domain.sh --host-config=host-master.xml

Domain Wide Configuration – domain.xml

Once a Host Controller has processed its host-specific configuration, it knows whether it is
configured to act as the master Domain Controller. If it is, it must parse the domain wide
configuration file, by default located at domain/configuration/domain.xml. This file contains the bulk
of the settings that should be applied to the servers in the domain when they are launched – among
other things, what subsystems they should run with what settings, what sockets should be used,
and what deployments should be deployed.

Which domain-wide configuration should be used can be controlled via the _ --domain-config_
command line argument:

$ bin/domain.sh --domain-config=domain-production.xml

26

That argument is only relevant for hosts configured to act as the master.

A slave Host Controller does not usually parse the domain wide configuration file. A slave gets the
domain wide configuration from the remote master Domain Controller when it registers with it. A
slave also will not persist changes to a domain.xml file if one is present on the filesystem. For that
reason it is recommended that no domain.xml be kept on the filesystem of hosts that will only run as
slaves.

A slave can be configured to keep a locally persisted copy of the domain wide configuration and
then use it on boot (in case the master is not available.) See --backup and --cached-dc under
Command line parameters.

27

Command_line_parameters.adoc

Chapter 4. Interfaces and ports

4.1. Interface declarations
WildFly uses named interface references throughout the configuration. A network interface is
declared by specifying a logical name and a selection criteria for the physical interface:

[standalone@localhost:9990 /] :read-children-names(child-type=interface)
{
 "outcome" => "success",
 "result" => [
 "management",
 "public"
]
}

This means the server in question declares two interfaces: One is referred to as " management"; the
other one " public". The " management" interface is used for all components and services that are
required by the management layer (i.e. the HTTP Management Endpoint). The " public" interface
binding is used for any application related network communication (i.e. Web, Messaging, etc).
There is nothing special about these names; interfaces can be declared with any name. Other
sections of the configuration can then reference those interfaces by their logical name, rather than
having to include the full details of the interface (which, on servers in a management domain, may
vary on different machines).

The domain.xml, host.xml and standalone.xml configuration files all include a section where
interfaces can be declared. If we take a look at the XML declaration it reveals the selection criteria.
The criteria is one of two types: either a single element indicating that the interface should be
bound to a wildcard address, or a set of one or more characteristics that an interface or address
must have in order to be a valid match. The selection criteria in this example are specific IP
addresses for each interface:

<interfaces>
 <interface name="management">
 <inet-address value="127.0.0.1"/>
 </interface>
 <interface name="public">
 <inet-address value="127.0.0.1"/>
 </interface>
</interfaces>

Some other examples:

28

<interface name="global">
 <!-- Use the wildcard address -->
 <any-address/>
</interface>

<interface name="external">
 <nic name="eth0"/>
</interface>

<interface name="default">
 <!-- Match any interface/address on the right subnet if it's
 up, supports multicast and isn't point-to-point -->
 <subnet-match value="192.168.0.0/16"/>
 <up/>
 <multicast/>
 <not>
 <point-to-point/>
 </not>
</interface>

4.1.1. The -b command line argument

WildFly supports using the -b command line argument to specify the address to assign to interfaces.
See Controlling the Bind Address with -b for further details.

4.2. Socket Binding Groups
The socket configuration in WildFly works similarly to the interfaces declarations. Sockets are
declared using a logical name, by which they will be referenced throughout the configuration.
Socket declarations are grouped under a certain name. This allows you to easily reference a
particular socket binding group when configuring server groups in a managed domain. Socket
binding groups reference an interface by its logical name:

<socket-binding-group name="standard-sockets" default-interface="public">
 <socket-binding name="management-http" interface="management" port=
"${jboss.management.http.port:9990}"/>
 <socket-binding name="management-https" interface="management" port=
"${jboss.management.https.port:9993}"/>
 <socket-binding name="ajp" port="${jboss.ajp.port:8009}"/>
 <socket-binding name="http" port="${jboss.http.port:8080}"/>
 <socket-binding name="https" port="${jboss.https.port:8443}"/>
 <socket-binding name="txn-recovery-environment" port="4712"/>
 <socket-binding name="txn-status-manager" port="4713"/>
</socket-binding-group>

A socket binding includes the following information:

29

Command_line_parameters.adoc#controlling-the-bind-address

• name — logical name of the socket configuration that should be used elsewhere in the
configuration

• port — base port to which a socket based on this configuration should be bound. (Note that
servers can be configured to override this base value by applying an increment or decrement to
all port values.)

• interface (optional) — logical name (see "Interfaces declarations" above) of the interface to
which a socket based on this configuration should be bound. If not defined, the value of the
"default-interface" attribute from the enclosing socket binding group will be used.

• multicast-address (optional) — if the socket will be used for multicast, the multicast address to
use

• multicast-port (optional) — if the socket will be used for multicast, the multicast port to use

• fixed-port (optional, defaults to false) — if true, declares that the value of port should always be
used for the socket and should not be overridden by applying an increment or decrement

4.3. IPv4 versus IPv6
WildFly supports the use of both IPv4 and IPv6 addresses. By default, WildFly is configured for use
in an IPv4 network and so if you are running in an IPv4 network, no changes are required. If you
need to run in an IPv6 network, the changes required are minimal and involve changing the JVM
stack and address preferences, and adjusting any interface IP address values specified in the
configuration (standalone.xml or domain.xml).

4.3.1. Stack and address preference

The system properties java.net.preferIPv4Stack and java.net.preferIPv6Addresses are used to
configure the JVM for use with IPv4 or IPv6 addresses. With WildFly, in order to run using IPv4
addresses, you need to specify java.net.preferIPv4Stack=true; in order to run with IPv6 addresses,
you need to specify java.net.preferIPv4Stack=false (the JVM default) and
java.net.preferIPv6Addresses=true. The latter ensures that any hostname to IP address conversions
always return IPv6 address variants.

These system properties are conveniently set by the JAVA_OPTS environment variable, defined in
the standalone.conf (or domain.conf) file. For example, to change the IP stack preference from its
default of IPv4 to IPv6, edit the standalone.conf (or domain.conf) file and change its default IPv4
setting:

if ["x$JAVA_OPTS" = "x"]; then
 JAVA_OPTS=" ... -Djava.net.preferIPv4Stack=true ..."
...

to an IPv6 suitable setting:

30

if ["x$JAVA_OPTS" = "x"]; then
 JAVA_OPTS=" ... -Djava.net.preferIPv4Stack=false
-Djava.net.preferIPv6Addresses=true ..."
...

4.3.2. IP address literals

To change the IP address literals referenced in standalone.xml (or domain.xml), first visit the
interface declarations and ensure that valid IPv6 addresses are being used as interface values. For
example, to change the default configuration in which the loopback interface is used as the primary
interface, change from the IPv4 loopback address:

<interfaces>
 <interface name="management">
 <inet-address value="${jboss.bind.address.management:127.0.0.1}"/>
 </interface>
 <interface name="public">
 <inet-address value="${jboss.bind.address:127.0.0.1}"/>
 </interface>
</interfaces>

to the IPv6 loopback address:

<interfaces>
 <interface name="management">
 <inet-address value="${jboss.bind.address.management:[::1]}"/>
 </interface>
 <interface name="public">
 <inet-address value="${jboss.bind.address:[::1]}"/>
 </interface>
</interfaces>

Note that when embedding IPv6 address literals in the substitution expression, square brackets
surrounding the IP address literal are used to avoid ambiguity. This follows the convention for the
use of IPv6 literals in URLs.

Over and above making such changes for the interface definitions, you should also check the rest of
your configuration file and adjust IP address literals from IPv4 to IPv6 as required.

31

Chapter 5. Administrative security

32

Chapter 6. Security Realms
Within WildFly we make use of security realms to secure access to the management interfaces,
these same realms are used to secure inbound access as exposed by JBoss Remoting such as remote
JNDI and EJB access, the realms are also used to define an identity for the server - this identity can
be used for both inbound connections to the server and outbound connections being established by
the server.

6.1. General Structure
The general structure of a management realm definition is: -

<security-realm name="ManagementRealm">
 <plug-ins></plug-ins>
 <server-identities></server-identities>
 <authentication></authentication>
 <authorization></authorization>
</security-realm>

• plug-ins - This is an optional element that is used to define modules what will be searched for
security realm PlugInProviders to extend the capabilities of the security realms.

• server-identities - An optional element to define the identity of the server as visible to the
outside world, this applies to both inbound connection to a resource secured by the realm and
to outbound connections also associated with the realm.

One example is the SSL identity of the server, for inbound connections this will control the identity
of the server as the SSL connection is established, for outbound connections this same identity can
be used where CLIENT-CERT style authentication is being performed.

A second example is where the server is establishing an outbound connection that requires
username / password authentication - this element can be used to define that password.

• authentication - This is probably the most important element that will be used within a security
realm definition and mostly applies to inbound connections to the server, this element defines
which backing stores will be used to provide the verification of the inbound connection.

This element is optional as there are some scenarios where it will not be required such as if a realm
is being defined for an outbound connection using a username and password.

• authorization - This is the final optional element and is used to define how roles are loaded for
an authenticated identity. At the moment this is more applicable for realms used for access to
EE deployments such as web applications or EJBs but this will also become relevant as we add
role based authorization checks to the management model.

33

6.2. Using a Realm
After a realm has been defined it needs to be associated with an inbound or outbound connection
for it to be used, the following are some examples where these associations are used within the
WildFly 11 configuration.

6.2.1. Inbound Connections

Management Interfaces

Either within the standalone.xml or host.xml configurations the security realms can be associated
with the management interface as follows:

<http-interface security-realm="ManagementRealm">...</http-interface>

If the security-realm attribute is omitted or removed from the interface definition it means that
access to that interface will be unsecured.

By default we do bind these interfaces to the loopback address so that the
interfaces are not accessible remotely out of the box, however do be aware that if
these interfaces are then unsecured any other local user will be able to control and
administer the WildFly installation.

Remoting Subsystem

The Remoting subsystem exposes a connector to allow for inbound comunications with JNDI and
the EJB subsystem by default we associate the ApplicationRealm with this connection.

<subsystem xmlns="urn:jboss:domain:remoting:3.0">
 <endpoint worker="default"/>
 <http-connector name="http-remoting-connector" connector-ref="default" security-
realm="ApplicationRealm"/>
</subsystem>

6.2.2. Outbound Connections

Remoting Subsystem

Outbound connections can also be defined within the Remoting subsystem, these are typically used
for remote EJB invocations from one AS server to another, in this scenario the security realm is
used to obtain the server identity either it’s password for X.509 certificate and possibly a trust store
to verify the certificate of the remote host.

Even if the referenced realm contains username and password authentication
configuration the client side of the connection will NOT use this to verify the
remote server.

34

<remote-outbound-connection name="remote-ejb-connection"
 outbound-socket-binding-ref="binding-remote-ejb-
connection"
 username="user1"
 security-realm="PasswordRealm">

The security realm is only used to obtain the password for this example, as you
can see here the username is specified separately.

Slave Host Controller

When running in domain mode slave host controllers need to establish a connection to the native
interface of the master domain controller so these also need a realm for the identity of the slave.

<domain-controller>
 <remote host="${jboss.domain.master.address}" port="
${jboss.domain.master.port:9999}" security-realm="ManagementRealm"/>
</domain-controller>

By default when a slave host controller authenticates against the master domain
controller it uses its configured name as its username. If you want to override the
username used for authentication a username attribute can be added to the <remote
/> element.

6.3. Authentication
One of the primary functions of the security realms is to define the user stores that will be used to
verify the identity of inbound connections, the actual approach taken at the transport level is based
on the capabilities of these backing store definitions. The security realms are used to secure
inbound connections for both the http management interface and for inbound remoting
connections for both the native management interface and to access other services exposed over
remoting - because of this there are some small differences between how the realm is used for each
of these.

At the transport level we support the following authentication mechanisms.

HTTP Remoting (SASL)

None Anonymous

N/A JBoss Local User

Digest Digest

Basic Plain

Client Cert Client Cert

The most notable are the first two in this list as they need some additional explanation - the final 3

35

are fairly standard mechanisms.

If either the http interface, the native interface or a remoting connection are difined without a
security realm reference then they are effectively unsecured, in the case of the http interface this
means that no authentication will be performed on the incoming connection - for the remoting
connections however we make use of SASL so require at least one authentication mechanism so
make use of the anonymous mechanism to allow a user in without requiring a validated
authentication process.

The next mechanism 'JBoss Local User' is specific to the remoting connections - as we ship WildFly
secured by default we wanted a way to allow users to connect to their own AS installation after it is
started without mandating that they define a user with a password - to accomplish this we have
added the 'JBoss Local User' mechanism. This mechanism makes the use of tokens exchanged on the
filesystem to prove that the client is local to the AS installation and has the appropriate file
permissions to read a token written by the AS to file. As this mechanism is dependent on both
server and client implementation details it is only supported for the remoting connections and not
the http connections - at some point we may review if we can add support for this to the http
interface but we would need to explore the options available with the commony used web
browsers that are used to communicate with the http interface.

The Digest mechanism is simply the HTTP Digest / SASL Digest mechanism that authenticates the
user by making use of md5 hashed including nonces to avoid sending passwords in plain text over
the network - this is the preferred mechanism for username / password authentication.

The HTTP Basic / SASL Plain mechanism is made available for times that Digest can not be used but
effectively this means that the users password will be sent over the network in the clear unless SSL
is enabled.

The final mechanism Client-Cert allows X.509 certificates to be used to verify the identity of the
remote client.

One point bearing in mind is that it is possible that an association with a realm can
mean that a single incoming connection has the ability to choose between one or
more authentication mechanisms. As an example it is possible that an incoming
remoting connection could choose between 'Client Cert', A username password
mechanism or 'JBoss Local User' for authentication - this would allow say a local
user to use the local mechanism, a remote user to supply their username and
password whilst a remote script could make a call and authenticate using a
certificate.

6.4. Authorization
The actual security realms are not involved in any authorization decisions. However, they can be
configured to load a user’s roles, which will subsequently be used to make authorization decisions -
when references to authorization are seen in the context of security realms, it is this loading of
roles that is being referred to.

For the loading of roles, the process is split out to occur after the authentication step so after a user

36

has been authenticated, a second step will occur to load the roles based on the username they used
to authenticate with.

6.5. Out Of The Box Configuration
Before describing the complete set of configuration options available within the realms, we will
look at the default configuration, as for most users, that is going to be the starting point before
customising further.

The examples here are taken from the standalone configuration. However, the
descriptions are equally applicable to domain mode. One point worth noting is
that all security realms defined in the host.xml are available to be referenced
within the domain configuration for the servers running on that host controller.

6.5.1. Management Realm

<security-realm name="ManagementRealm">
 <authentication>
 <local default-user="$local"/>
 <properties path="mgmt-users.properties" relative-to="jboss.server.config.dir"/>
 </authentication>
</security-realm>

The realm ManagementRealm is the simplest realm within the default configuration. This realm simply
enables two authentication mechanisms, the local mechanism and username/password
authentication which will be using Digest authentication.

• local

When using the local mechanism, it is optional for remote clients to send a username to the server.
This configuration specifies that where clients do not send a username, it will be assumed that the
clients username is $local - the <local /> element can also be configured to allow other usernames
to be specified by remote clients. However, for the default configuration, this is not enabled so is
not supported.

• properties

For username / password authentication the users details will be loaded from the file mgmt-
users.properties which is located in \{ jboss.home}/standalone/configuration or \{
jboss.home}/domain/configuration depending on the running mode of the server.

Each user is represented on their own line and the format of each line is username= HASH where HASH
is a pre-prepared hash of the users password along with their username and the name of the realm
which in this case is ManagementRealm.

37

You do not need to worry about generating the entries within the properties file as
we provide a utility add-user.sh or add-user.bat to add the users, this utility is
described in more detail below.

By pre-hashing the passwords in the properties file it does mean that if the user
has used the same password on different realms then the contents of the file
falling into the wrong hands does not nescesarily mean all accounts are
compromised. HOWEVER the contents of the files do still need to be protected as
they can be used to access any server where the realm name is the same and the
user has the same username and password pair.

6.5.2. Application Realm

<security-realm name="ApplicationRealm">
 <authentication>
 <local default-user="$local" allowed-users="*"/>
 <properties path="application-users.properties" relative-to=
"jboss.server.config.dir"/>
 </authentication>
 <authorization>
 <properties path="application-roles.properties" relative-to=
"jboss.server.config.dir"/>
 </authorization>
</security-realm>

The realm ApplicationRealm is a slightly more complex realm as this is used for both

Authentication

The authentication configuration is very similar to the ManagementRealm in that it enabled both the
local mechanism and a username/password based Digest mechanism.

• local

The local configuration is similar to the ManagementRealm in that where the remote user does not
supply a username it will be assumed that the username is $local, however in addition to this there
is now an allowed-users attribute with a value of '*' - this means that the remote user can specify
any username and it will be accepted over the local mechanism provided that the local verification
is a success.

To restrict the usernames that can be specified by the remote user a comma
separated list of usernames can be specified instead within the allowed-users
attribute.

• properties

The properties definition works in exactly the same way as the definition for ManagementRealm
except now the properties file is called application-users.properties.

38

Authorization

The contents of the Authorization element are specific to the ApplicationRealm, in this case a
properties file is used to load a users roles.

The properties file is called application-roles.properties and is located in \{
jboss.home}/standalone/configuration or \{ jboss.home}/domain/configuration depending on the
running mode of the server. The format of this file is username= ROLES where ROLES is a comma
separated list of the users roles.

As the loading of a users roles is a second step this is where it may be desirable to
restrict which users can use the local mechanism so that some users still require
username and password authentication for their roles to be loaded.

other security domain

<security-domain name="other" cache-type="default">
 <authentication>
 <login-module code="Remoting" flag="optional">
 <module-option name="password-stacking" value="useFirstPass"/>
 </login-module>
 <login-module code="RealmDirect" flag="required">
 <module-option name="password-stacking" value="useFirstPass"/>
 </login-module>
 </authentication>
</security-domain>

When applications are deployed to the application server they are associated with a security
domain within the security subsystem, the other security domain is provided to work with the
ApplicationRealm, this domain is defined with a pair of login modules Remoting and RealmDirect.

• Remoting

The Remoting login module is used to check if the request currently being authenticated is a request
received over a Remoting connection, if so the identity that was created during the authentication
process is used and associated with the current request.

If the request did not arrive over a Remoting connection this module does nothing and allows the
JAAS based login to continue to the next module.

• RealmDirect

The RealmDirect login module makes use of a security realm to authenticate the current request if
that did not occur in the Remoting login module and then use the realm to load the users roles, by
default this login module assumes the realm to use is called ApplicationRealm although other names
can be overridden using the "realm" module-option.

The advantage of this approach is that all of the backing store configuration can be left within the
realm with the security domain just delegating to the realm.

39

6.6. add-user utility
For use with the default configuration we supply a utility add-user which can be used to manage the
properties files for the default realms used to store the users and their roles.

The add-user utility can be used to manage both the users in the ManagementRealm and the users in
the ApplicationRealm, changes made apply to the properties file used both for domain mode and
standalone mode.

After you have installed your application server and decided if you are going to
run in standalone mode or domain mode you can delete the parent folder for the
mode you are not using, the add-user utility will then only be managing the
properties file for the mode in use.

The add-user utility is a command line utility however it can be run in both interactive and non-
interactive mode. Depending on your platform the script to run the add-user utility is either add-
user.sh or add-user.bat which can be found in \{ jboss.home}/bin.

This guide now contains a couple of examples of this utility in use to accomplish the most common
tasks.

6.6.1. Adding a User

Adding users to the properties files is the primary purpose of this utility. Usernames can only
contain the following characters in any number and in any order:

• Alphanumeric characters (a-z, A-Z, 0-9)

• Dashes (-), periods (.), commas (,), at (@)

• Escaped backslash (\\)

• Escaped equals (\=)

The server caches the contents of the properties files in memory, however the
server does check the modified time of the properties files on each authentication
request and re-load if the time has been updated - this means all changes made by
this utility are immediately applied to any running server.

A Management User

The default name of the realm for management users is ManagementRealm, when the
utility prompts for the realm name just accept the default unless you have
switched to a different realm.

Interactive Mode

40

Here we have added a new Management User called adminUser, as you can see some of the
questions offer default responses so you can just press enter without repeating the default value.

For now just answer n or no to the final question, adding users to be used by processes is described
in more detail in the domain management chapter.

Non-Interactive Mode

To add a user in non-interactive mode the command ./add-user.sh {username} {password} can be
used.

If you add users using this approach there is a risk that any other user that can
view the list of running process may see the arguments including the password of
the user being added, there is also the risk that the username / password
combination will be cached in the history file of the shell you are currently using.

41

An Application User

When adding application users in addition to adding the user with their pre-hashed password it is
also now possible to define the roles of the user.

Interactive Mode

Here a new user called appUser has been added, in this case a comma separated list of roles has also
been specified.

As with adding a management user just answer n or no to the final question until you know you are
adding a user that will be establishing a connection from one server to another.

Non-Interactive Mode

To add an application user non-interactively use the command ./add-user.sh -a {username}

{password}.

42

Non-interactive mode does not support defining a list of users, to associate a user
with a set of roles you will need to manually edit the application-roles.properties
file by hand.

6.6.2. Updating a User

Within the add-user utility it is also possible to update existing users, in interactive mode you will
be prompted to confirm if this is your intention.

A Management User

Interactive Mode

Non-Interactive Mode

In non-interactive mode if a user already exists the update is automatic with no confirmation
prompt.

An Application User

Interactive Mode

43

On updating a user with roles you will need to re-enter the list of roles assigned to
the user.

Non-Interactive Mode

In non-interactive mode if a user already exists the update is automatic with no confirmation
prompt.

6.6.3. Community Contributions

There are still a few features to add to the add-user utility such as removing users or adding
application users with roles in non-interactive mode, if you are interested in contributing to
WildFly development the add-user utility is a good place to start as it is a stand alone utility,
however it is a part of the AS build so you can become familiar with the AS development processes
without needing to delve straight into the internals of the application server.

6.7. JMX Security
When configuring the security realms remote access to the server’s MBeanServer needs a special
mention. When running in standalone mode the following is the default configuration:

44

<subsystem xmlns="urn:jboss:domain:jmx:1.3">
 ...
 <remoting-connector/>
</subsystem>

With this configuration remote access to JMX is provided over the http management interface, this
is secured using the realm ManagementRealm, this means that any user that can connect to the native
interface can also use this interface to access the MBeanServer - to disable this just remove the
<remoting-connector /> element.

In domain mode it is slightly more complicates as the native interface is exposed by the host
controller process however each application server is running in it’s own process so by default
remote access to JMX is disabled.

<subsystem xmlns="urn:jboss:domain:remoting:3.0">
 <http-connector name="http-remoting-connector" connector-ref="default" security-
realm="ApplicationRealm"/>
</subsystem>

<subsystem xmlns="urn:jboss:domain:jmx:1.3">
 ...
 <!--<remoting-connector use-management-endpoint="false"/>-->
</subsystem>

To enable remote access to JMX uncomment the <remoting-connector /> element however be aware
that this will make the MBeanServer accessible over the same Remoting connector used for remote
JNDI and EJB access - this means that any user that can authenticate against the realm
ApplicationRealm will be able to access the MBeanServer.

The following Jira issue is currently outstanding to allow access to the individual
MBeanServers by proxying through the host controllers native interface AS7-4009,
if this is a feature you would use please add your vote to the issue.

6.8. Detailed Configuration
This section of the documentation describes the various configuration options when defining
realms, plug-ins are a slightly special case so the configuration options for plug-ins is within it’s
own section.

Within a security realm definition there are four optional elements <plug-ins />, <server-
identities />, <authentication />, and <authorization />, as mentioned above plug-ins is defined
within it’s own section below so we will begin by looking at the <server-identities /> element.

45

https://issues.jboss.org/browse/AS7-4009

6.8.1. <server-identities />

The server identities section of a realm definition is used to define how a server appears to the
outside world, currently this element can be used to configure a password to be used when
establishing a remote outbound connection and also how to load a X.509 key which can be used for
both inbound and outbound SSL connections.

<ssl />

<server-identities>
 <ssl protocol="...">
 <keystore path="..." relative-to="..." keystore-password="..." alias="..." key-
password="..." />
 </ssl>
</server-identities>

• protocol - By default this is set to TLS and in general does not need to be set.

The SSL element then contains the nested <keystore /> element, this is used to define how to load
the key from the file based (JKS) keystore.

• path (mandatory) - This is the path to the keystore, this can be an absolute path or relative to
the next attribute.

• relative-to (optional) - The name of a service representing a path the keystore is relative to.

• keystore-password (mandatory) - The password required to open the keystore.

• alias (optional) - The alias of the entry to use from the keystore - for a keystore with multiple
entries in practice the first usable entry is used but this should not be relied on and the alias
should be set to guarantee which entry is used.

• key-password (optional) - The password to load the key entry, if omitted the keystore-password
will be used instead.

If you see the error UnrecoverableKeyException: Cannot recover key the most likely
cause that you need to specify a key-password and possible even an alias as well to
ensure only one key is loaded.

<secret />

<server-identities>
 <secret value="..." />
</server-identities>

• value (mandatory) - The password to use for outbound connections encoded as Base64, this
field also supports a vault expression should stronger protection be required.

46

The username for the outbound connection is specified at the point the outbound
connection is defined.

6.8.2. <authentication />

The authentication element is predominantly used to configure the authentication that is
performed on an inbound connection, however there is one exception and that is if a trust store is
defined - on negotiating an outbound SSL connection the trust store will be used to verify the
remote server.

<authentication>
 <truststore />
 <local />
 <jaas />
 <ldap />
 <properties />
 <users />
 <plug-in />
</authentication>

An authentication definition can have zero or one <truststore />, it can also have zero or one
<local /> and it can also have one of <jaas />, <ldap />, <properties />, <users />, and <plug-in />
i.e. the local mechanism and a truststore for certificate verification can be independent switched on
and off and a single username / password store can be defined.

<truststore />

<authentication>
 <truststore path="..." relative-to="..." keystore-password="..."/>
</authentication>

This element is used to define how to load a key store file that can be used as the trust store within
the SSLContext we create internally, the store is then used to verify the certificates of the remote
side of the connection be that inbound or outbound.

• path (mandatory) - This is the path to the keystore, this can be an absolute path or relative to
the next attribute.

• relative-to (optional) - The name of a service representing a path the keystore is relative to.

• keystore-password (mandatory) - The password required to open the keystore.

Although this is a definition of a trust store the attribute for the password is
keystore-password, this is because the underlying file being opened is still a key
store.

47

<local />

<authentication>
 <local default-user="..." allowed-users="..." />
</authentication>

This element switches on the local authentication mechanism that allows clients to the server to
verify that they are local to the server, at the protocol level it is optional for the remote client to
send a user name in the authentication response.

• default-user (optional) - If the client does not pass in a username this is the assumed username,
this value is also automatically added to the list of allowed-users.

• allowed-users (optional) - This attribute is used to specify a comma separated list of users
allowed to authenticate using the local mechanism, alternatively ' `*’ can be specified to allow
any username to be specified.

<jaas />

<authentication>
 <jaas name="..." />
</authentication>

The jaas element is used to enable username and password based authentication where the
supplied username and password are verified by making use of a configured jaas domain.

• name (mandatory) - The name of the jaas domain to use to verify the supplied username and
password.

As JAAS authentication works by taking a username and password and verifying
these the use of this element means that at the transport level authentication will
be forced to send the password in plain text, any interception of the messages
exchanged between the client and server without SSL enabled will reveal the users
password.

<ldap />

<authentication>
 <ldap connection="..." base-dn="..." recursive="..." user-dn="...">
 <username-filter attribute="..." />
 <advanced-filter filter="..." />
 </ldap>
</authentication>

The ldap element is used to define how LDAP searches will be used to authenticate a user, this
works by first connecting to LDAP and performing a search using the supplied user name to
identity the distinguished name of the user and then a subsequent connection is made to the server

48

using the password supplied by the user - if this second connection is a success then authentication
succeeds.

Due to the verification approach used this configuration causes the authentication
mechanisms selected for the protocol to cause the password to be sent from the
client in plain text, the following Jira issue is to investigating proxying a Digest
authentication with the LDAP server so no plain text password is needed AS7-4195.

• connection (mandatory) - The name of the connection to use to connect to LDAP.

• base-dn (mandatory) - The distinguished name of the context to use to begin the search from.

• recursive (optional) - Should the filter be executed recursively? Defaults to false.

• user-dn (optional) - After the user has been found specifies which attribute to read for the users
distinguished name, defaults to ' `dn’.

Within the ldap element only one of <username-filter /> or <advanced-filter /> can be specified.

<username-filter />

This element is used for a simple filter to match the username specified by the remote user against
a single attribute, as an example with Active Directory the match is most likely to be against the '
`sAMAccountName’ attribute.

• attribute (mandatory) - The name of the field to match the users supplied username against.

<advanced-filter />

This element is used where a more advanced filter is required, one example use of this filter is to
exclude certain matches by specifying some additional criteria for the filter.

• filter (mandatory) - The filter to execute to locate the user, this filter should contain '\{ 0}' as a
place holder for the username supplied by the user authenticating.

<properties />

<authentication>
 <properties path="..." relative-to="..." plain-text="..." />
</authentication>

The properties element is used to reference a properties file to load to read a users password or
pre-prepared digest for the authentication process.

• path (mandatory) - The path to the properties file, either absolute or relative to the path
referenced by the relative-to attribute.

• relative-to (optional) - The name of a path service that the defined path will be relative to.

• plain-text (optional) - Setting to specify if the passwords are stored as plain text within the
properties file, defaults to false.

49

https://issues.jboss.org/browse/AS7-4195

By default the properties files are expected to store a pre-prepared hash of the
users password in the form HEX(MD5(username ':' realm ':' password))

<users />

<authentication>
 <users>
 <user username="...">
 <password>...</password>
 </user>
 </users>
</authentication>

This is a very simple store of a username and password that stores both of these within the domain
model, this is only really provided for the provision of simple examples.

• username (mandatory) - A users username.

The <password/> element is then used to define the password for the user.

6.8.3. <authorization />

The authorization element is used to define how a users roles can be loaded after the
authentication process completes, these roles may then be used for subsequent authorization
decisions based on the service being accessed. At the moment only a properties file approach or a
custom plug-in are supported - support for loading roles from LDAP or from a database are planned
for a subsequent release.

<authorization>
 <properties />
 <plug-in />
</authorization>

<properties />

<authorization>
 <properties path="..." relative-to="..." />
</authorization>

The format of the properties file is username={ROLES} where \{ ROLES} is a comma separated list of the
users roles.

• path (mandatory) - The path to the properties file, either absolute or relative to the path
referenced by the relative-to attribute.

• relative-to (optional) - The name of a path service that the defined path will be relative to.

50

6.8.4. <outbound-connection />

Strictly speaking these are not a part of the security realm definition, however at the moment they
are only used by security realms so the definition of outbound connection is described here.

<management>
 <security-realms />
 <outbound-connections>
 <ldap />
 </outbound-connections>
</management>

<ldap />

At the moment we only support outbound connections to ldap servers for the authentication
process - this will later be expanded when we add support for database based authentication.

<outbound-connections>
 <ldap name="..." url="..." search-dn="..." search-credential="..." initial-context-
factory="..." />
</outbound-connections>

The outbound connections are defined in this section and then referenced by name from the
configuration that makes use of them.

• name (mandatory) - The unique name used to reference this connection.

• url (mandatory) - The URL use to establish the LDAP connection.

• search-dn (mandatory) - The distinguished name of the user to authenticate as to perform the
searches.

• search-credential (mandatory) - The password required to connect to LDAP as the search-dn.

• initial-context-factory (optional) - Allows overriding the initial context factory, defaults to '
`com.sun.jndi.ldap.LdapCtxFactory’

6.9. Plug Ins
Within WildFly 11 for communication with the management interfaces and for other services
exposed using Remoting where username / password authentication is used the use of Digest
authentication is preferred over the use of HTTP Basic or SASL Plain so that we can avoid the
sending of password in the clear over the network. For validation of the digests to work on the
server we either need to be able to retrieve a users plain text password or we need to be able to
obtain a ready prepared hash of their password along with the username and realm.

Previously to allow the addition of custom user stores we have added an option to the realms to call
out to a JAAS domain to validate a users username and password, the problem with this approach
is that to call JAAS we need the remote user to send in their plain text username and password so

51

that a JAAS LoginModule can perform the validation, this forces us down to use either the HTTP
Basic authentication mechanism or the SASL Plain mechanism depending on the transport used
which is undesirable as we can not longer use Digest.

To overcome this we now support plugging in custom user stores to support loading a users
password, hash and roles from a custom store to allow different stores to be implemented without
forcing the authentication back to plain text variant, this article describes the requirements for a
plug in and shows a simple example plug-in for use with WildFly 11.

When implementing a plug in there are two steps to the authentication process, the first step is to
load the users identity and credential from the relevant store - this is then used to verify the user
attempting to connect is valid. After the remote user is validated we then load the users roles in a
second step. For this reason the support for plug-ins is split into the two stages, when providing a
plug-in either of these two steps can be implemented but there is no requirement to implement the
other side.

When implementing a plug-in the following interfaces are the bare minimum that need to be
implemented so depending on if a plug-in to load a users identity or a plug-in to load a users roles is
being implemented you will be implementing one of these interfaces.

Note - All classes and interfaces of the SPI to be implemented are in the
'org.jboss.as.domain.management.plugin' package which is a part of the 'org.jboss.as.domain-
management' module but for simplicity for the rest of this section only the short names will be shown.

6.9.1. AuthenticationPlugIn

To implement an AuthenticationPlugIn the following interface needs to be implemened: -

public interface AuthenticationPlugIn<T extends Credential> {
 Identity<T> loadIdentity(final String userName, final String realm) throws
IOException;
}

During the authentication process this method will be called with the user name supplied by the
remote user and the name of the realm they are authenticating against, this method call represents
that an authentication attempt is occurring but it is the Identity instance that is returned that will
be used for the actual authentication to verify the remote user.

The Identity interface is also an interface you will implement: -

public interface Identity<T extends Credential> {
 String getUserName();
 T getCredential();
}

Additional information can be contained within the Identity implementation although it will not
currently be used, the key piece of information here is the Credential that will be returned - this
needs to be one of the following: -

52

PasswordCredential

public final class PasswordCredential implements Credential {
 public PasswordCredential(final char[] password);
 public char[] getPassword();
 void clear();
}

The PasswordCredential is already implemented so use this class if you have the plain text password
of the remote user, by using this the secured interfaces will be able to continue using the Digest
mechanism for authentication.

DigestCredential

public final class DigestCredential implements Credential {
 public DigestCredential(final String hash);
 public String getHash();
}

This class is also already implemented and should be returned if instead of the plain text password
you already have a pre-prepared hash of the username, realm and password.

ValidatePasswordCredential

public interface ValidatePasswordCredential extends Credential {
 boolean validatePassword(final char[] password);
}

This is a special Credential type to use when it is not possible to obtain either a plain text
representation of the password or a pre-prepared hash - this is an interface as you will need to
provide an implementation to verify a supplied password. The down side of using this type of
Credential is that the authentication mechanism used at the transport level will need to drop down
from Digest to either HTTP Basic or SASL Plain which will now mean that the remote client is
sending their credential across the network in the clear.

If you use this type of credential be sure to force the mechanism choice to Plain as described in the
configuration section below.

6.9.2. AuthorizationPlugIn

If you are implementing a custom mechanism to load a users roles you need to implement the
AuthorizationPlugIn

public interface AuthorizationPlugIn {
 String[] loadRoles(final String userName, final String realm) throws IOException;
}

53

As with the AuthenticationPlugIn this has a single method that takes a users userName and realm -
the return type is an array of Strings with each entry representing a role the user is a member of.

6.9.3. PlugInConfigurationSupport

In addition to the specific interfaces above there is an additional interface that a plug-in can
implement to receive configuration information before the plug-in is used and also to receive a
Map instance that can be used to share state between the plug-in instance used for the
authentication step of the call and the plug-in instance used for the authorization step.

public interface PlugInConfigurationSupport {
 void init(final Map<String, String> configuration, final Map<String, Object>
sharedState) throws IOException;
}

6.9.4. Installing and Configuring a Plug-In

The next step of this article describes the steps to implement a plug-in provider and how to make it
available within WildFly 11 and how to configure it. Example configuration and an example
implementation are shown to illustrate this.

The following is an example security realm definition which will be used to illustrate this: -

<security-realm name="PlugInRealm">
 <plug-ins>
 <plug-in module="org.jboss.as.sample.plugin"/>
 </plug-ins>
 <authentication>
 <plug-in name="Sample">
 <properties>
 <property name="darranl.password" value="dpd"/>
 <property name="darranl.roles" value="Admin,Banker,User"/>
 </properties>
 </plug-in>
 </authentication>
 <authorization>
 <plug-in name="Delegate" />
 </authorization>
</security-realm>

Before looking closely at the packaging and configuration there is one more interface to implement
and that is the PlugInProvider interface, that interface is responsible for making PlugIn instances
available at runtime to handle the requests.

PlugInProvider

54

public interface PlugInProvider {
 AuthenticationPlugIn<Credential> loadAuthenticationPlugIn(final String name);
 AuthorizationPlugIn loadAuthorizationPlugIn(final String name);
}

These methods are called with the name that is supplied in the plug-in elements that are contained
within the authentication and authorization elements of the configuration, based on the sample
configuration above the loadAuthenticationPlugIn method will be called with a parameter of
'Sample' and the loadAuthorizationPlugIn method will be called with a parameter of 'Delegate'.

Multiple plug-in providers may be available to the application server so if a PlugInProvider
implementation does not recognise a name then it should just return null and the server will
continue searching the other providers. If a PlugInProvider does recognise a name but fails to
instantiate the PlugIn then a RuntimeException can be thrown to indicate the failure.

As a server could have many providers registered it is recommended that a naming convention
including some form of hierarchy is used e.g. use package style names to avoid conflicts.

For the example the implementation is as follows: -

public class SamplePluginProvider implements PlugInProvider {

 public AuthenticationPlugIn<Credential> loadAuthenticationPlugIn(String name) {
 if ("Sample".equals(name)) {
 return new SampleAuthenticationPlugIn();
 }
 return null;
 }

 public AuthorizationPlugIn loadAuthorizationPlugIn(String name) {
 if ("Sample".equals(name)) {
 return new SampleAuthenticationPlugIn();
 } else if ("Delegate".equals(name)) {
 return new DelegateAuthorizationPlugIn();
 }
 return null;
 }
}

The load methods are called for each authentication attempt but it will be an implementation detail
of the provider if it decides to return a new instance of the provider each time - in this scenario as
we also use configuration and shared state then new instances of the implementations make sense.

To load the provider use a ServiceLoader so within the META-INF/services folder of the jar this
project adds a file called ' `org.jboss.as.domain.management.plugin.PlugInProvider’ - this contains
a single entry which is the fully qualified class name of the PlugInProvider implementation class.

55

org.jboss.as.sample.SamplePluginProvider

Package as a Module

To make the PlugInProvider available to the application it is bundled as a module and added to the
modules already shipped with WildFly 11.

To add as a module we first need a module.xml: -

<?xml version="1.0" encoding="UTF-8"?>

<module xmlns="urn:jboss:module:1.1" name="org.jboss.as.sample.plugin">
 <properties>
 </properties>

 <resources>
 <resource-root path="SamplePlugIn.jar"/>
 </resources>

 <dependencies>
 <module name="org.jboss.as.domain-management" />
 </dependencies>
</module>

The interfaces being implemented are in the ' org.jboss.as.domain-management’ module so a

dependency on that module is defined, this `module.xml is then placed in the '\{
`jboss.home}/modules/org/jboss/as/sample/plugin/main’.

The compiled classed and META-INF/services as described above are assembled into a jar called
SamplePlugIn.jar and also placed into this folder.

Looking back at the sample configuration at the top of the realm definition the following element
was added: -

 <plug-ins>
 <plug-in module="org.jboss.as.sample.plugin"/>
 </plug-ins>

This element is used to list the modules that should be searched for plug-ins. As plug-ins are loaded
during the server start up this search is a lazy search so don’t expect a definition to a non existant
module or to a module that does not contain a plug-in to report an error.

The AuthenticationPlugIn

The example AuthenticationPlugIn is implemented as: -

56

public class SampleAuthenticationPlugIn extends AbstractPlugIn {

 private static final String PASSWORD_SUFFIX = ".password";
 private static final String ROLES_SUFFIX = ".roles";
 private Map<String, String> configuration;

 public void init(Map<String, String> configuration, Map<String, Object>
sharedState) throws IOException {
 this.configuration = configuration;
 // This will allow an AuthorizationPlugIn to delegate back to this instance.
 sharedState.put(AuthorizationPlugIn.class.getName(), this);
 }

 public Identity loadIdentity(String userName, String realm) throws IOException {
 String passwordKey = userName + PASSWORD_SUFFIX;
 if (configuration.containsKey(passwordKey)) {
 return new SampleIdentity(userName, configuration.get(passwordKey));
 }
 throw new IOException("Identity not found.");
 }

 public String[] loadRoles(String userName, String realm) throws IOException {
 String rolesKey = userName + ROLES_SUFFIX;
 if (configuration.containsKey(rolesKey)) {
 String roles = configuration.get(rolesKey);
 return roles.split(",");
 } else {
 return new String[0];
 }
 }

 private static class SampleIdentity implements Identity {
 private final String userName;
 private final Credential credential;

 private SampleIdentity(final String userName, final String password) {
 this.userName = userName;
 this.credential = new PasswordCredential(password.toCharArray());
 }

 public String getUserName() {
 return userName;
 }

 public Credential getCredential() {
 return credential;
 }
 }
}

57

As you can see from this implementation there is also an additional class being extended
AbstractPlugIn - that is simply an abstract class that implements the AuthenticationPlugIn,
AuthorizationPlugIn, and PlugInConfigurationSupport interfaces already. The properties that were
defined in the configuration are passed in as a Map and importantly for this sample the plug-in
adds itself to the shared state map.

The AuthorizationPlugIn

The example implementation of the authentication plug in is as follows: -

public class DelegateAuthorizationPlugIn extends AbstractPlugIn {

 private AuthorizationPlugIn authorizationPlugIn;

 public void init(Map<String, String> configuration, Map<String, Object>
sharedState) throws IOException {
 authorizationPlugIn = (AuthorizationPlugIn) sharedState.get
(AuthorizationPlugIn.class.getName());
 }

 public String[] loadRoles(String userName, String realm) throws IOException {
 return authorizationPlugIn.loadRoles(userName, realm);
 }

}

This plug-in illustrates how two plug-ins can work together, by the AuthenticationPlugIn placing
itself in the shared state map it is possible for the authorization plug-in to make use of it for the
loadRoles implementation.

Another option to consider to achieve similar behaviour could be to provide an Identity
implementation that also contains the roles and place this in the shared state map - the
AuthorizationPlugIn can retrieve this and return the roles.

Forcing Plain Text Authentication

As mentioned earlier in this article if the ValidatePasswordCredential is going to be used then the
authentication used at the transport level needs to be forced from Digest authentication to plain
text authentication, this can be achieved by adding a mechanism attribute to the plug-in definition
within the authentication element i.e.

 <authentication>
 <plug-in name="Sample" mechanism="PLAIN">

6.10. Examples
This section of the document contains a couple of examples for the most common scenarios likely

58

to be used with the security realms, please feel free to raise Jira issues requesting additional
scenarios or if you have configured something not covered here please feel free to add your own
examples - this document is editable after all

At the moment these examples are making use of the ' `ManagementRealm’ however the same can
apply to the ' `ApplicationRealm’ or any custom realm you create for yourselves.

6.10.1. LDAP Authentication

The following example demonstrates an example configuration making use of Active Directory to
verify the users username and password.

<management>
 <security-realms>
 <security-realm name="ManagementRealm">
 <authentication>
 <ldap connection="EC2" base-dn="CN=Users,DC=darranl,DC=jboss,DC=org">
 <username-filter attribute="sAMAccountName" />
 </ldap>
 </authentication>
 </security-realm>

 </security-realms>

 <outbound-connections>
 <ldap name="EC2" url="ldap://127.0.0.1:9797" search-dn=
"CN=wf8,CN=Users,DC=darranl,DC=jboss,DC=org" search-credential="password"/>
 </outbound-connections>

 ...

</management>

For simplicity the <local/> configuration has been removed from this example,
however there it is fine to leave that in place for local authentication to remain
possible.

6.10.2. Enable SSL

The first step is the creation of the key, by default this is going to be used for both the native
management interface and the http management interface - to create the key we can use the
keyTool, the following example will create a key valid for one year.

Open a terminal window in the folder \{ jboss.home}/standalone/configuration and enter the
following command: -

keytool -genkey -alias server -keyalg RSA -keystore server.keystore -validity 365

59

Enter keystore password:
Re-enter new password:

In this example I choose ' `keystore_password’.

What is your first and last name?
 [Unknown]: localhost

Of all of the questions asked this is the most important and should match the host
name that will be entered into the web browser to connect to the admin console.

Answer the remaining questions as you see fit and at the end for the purpose of this example I set
the key password to ' `key_password’.

The following example shows how this newly created keystore will be referenced to enable SSL.

<security-realm name="ManagementRealm">
 <server-identities>
 <ssl>
 <keystore path="server.keystore" relative-to="jboss.server.config.dir" keystore-
password="keystore_password" alias="server" key-password="key_password" />
 </ssl>
 </server-identities>
 <authentication>
 ...
 </authentication>
</security-realm>

The contents of the <authentication /> have not been changed in this example so authentication
still occurs using either the local mechanism or username/password authentication using Digest.

6.10.3. Add Client-Cert to SSL

To enable Client-Cert style authentication we just now need to add a <truststore /> element to the
<authentication /> element referencing a trust store that has had the certificates or trusted clients
imported.

60

<security-realm name="ManagementRealm">
 <server-identities>
 <ssl>
 <keystore path="server.keystore" relative-to="jboss.server.config.dir" keystore-
password="keystore_password" alias="server" key-password="key_password" />
 </ssl>
 </server-identities>
 <authentication>
 <truststore path="server.truststore" relative-to="jboss.server.config.dir"
keystore-password="truststore_password" />
 <local default-user="$local"/>
 <properties path="mgmt-users.properties" relative-to="jboss.server.config.dir"/>
 </authentication>
</security-realm>

In this scenario if Client-Cert authentication does not occur clients can fall back to use either the
local mechanism or username/password authentication. To make Client-Cert based authentication
mandatory just remove the <local /> and <properties /> elements.

61

Chapter 7. Authorizing management actions
with Role Based Access Control
WildFly introduces a Role Based Access Control scheme that allows different administrative users
to have different sets of permissions to read and update parts of the management tree. This
replaces the simple permission scheme used in JBoss AS 7, where anyone who could successfully
authenticate to the management security realm would have all permissions.

7.1. Access Control Providers
WildFly ships with two access control "providers", the "simple" provider, and the "rbac" provider.
The "simple" provider is the default, and provides a permission scheme equivalent to the JBoss AS 7
behavior where any authenticated administrator has all permissions. The "rbac" provider gives the
finer grained permission scheme that is the focus of this section.

The access control configuration is included in the management section of a standalone server’s
standalone.xml, or in a new "management" section in a managed domain’s domain.xml. The access
control policy is centrally configured in a managed domain.

<management>
 . . .
 <access-control provider="simple">
 <role-mapping>
 <role name="SuperUser">
 <include>
 <user name="$local"/>
 </include>
 </role>
 </role-mapping>
 </access-control>
</management>

As you can see, the provider is set to "simple" by default. With the "simple" provider, the nested
"role-mapping" section is not actually relevant. It’s there to help ensure that if the provider
attribute is switched to "rbac" there will be at least one user mapped to a role that can continue to
administer the system. This default mapping assigns the "$local" user name to the RBAC role that
provides all permissions, the "SuperUser" role. The "$local" user name is the name an administrator
will be assigned if he or she uses the CLI on the same system as the WildFly instance and the "local"
authentication scheme is enabled.

7.2. RBAC provider overview
The access control scheme implemented by the "rbac" provider is based on seven standard roles. A
role is a named set of permissions to perform one of the actions: addressing (i.e. looking up) a
management resource, reading it, or modifying it. The different roles have constraints applied to
their permissions that are used to determine whether the permission is granted.

62

Detailed_Configuration.html#src-557240_DetailedConfiguration-authentication-local
Detailed_Configuration.html#src-557240_DetailedConfiguration-authentication-local

7.2.1. RBAC roles

The seven standard roles are divided into two broad categories, based on whether the role can deal
with items that are considered to be "security sensitive". Resources, attributes and operations that
may affect administrative security (e.g. security realm resources and attributes that contain
passwords) are "security sensitive".

Four roles are not given permissions for "security sensitive" items:

• Monitor – a read-only role. Cannot modify any resource.

• Operator – Monitor permissions, plus can modify runtime state, but cannot modify anything
that ends up in the persistent configuration. Could, for example, restart a server.

• Maintainer – Operator permissions, plus can modify the persistent configuration.

• Deployer – like a Maintainer, but with permission to modify persistent configuration
constrained to resources that are considered to be "application resources". A deployment is an
application resource. The messaging server is not. Items like datasources and JMS destinations
are not considered to be application resources by default, but this is configurable.

Three roles are granted permissions for security sensitive items:

• SuperUser – has all permissions. Equivalent to a JBoss AS 7 administrator.

• Administrator – has all permissions except cannot read or write resources related to the
administrative audit logging system.

• Auditor – can read anything. Can only modify the resources related to the administrative audit
logging system.

The Auditor and Administrator roles are meant for organizations that want a separation of
responsibilities between those who audit normal administrative actions and those who perform
them, with those who perform most actions (Administrator role) not being able to read or alter the
auditing configuration.

7.2.2. Access control constraints

The following factors are used to determine whether a given role is granted a permission:

• What the requested action is (address, read, write)

• Whether the resource, attribute or operation affects the persistent configuration

• Whether the resource, attribute or operation is related to the administrative audit logging
function

• Whether the resource, attribute or operation is configured as security sensitive

• Whether an attribute or operation parameter value has a security vault expression

• Whether a resource is considered to be associated with applications, as opposed to being part of
a general container configuration

The first three of these factors are non-configurable; the latter three allow some customization. See
" Configuring constraints" for details.

63

#application-constraint
#configuring-constraints

7.2.3. Addressing a resource

As mentioned above, permissions are granted to perform one of three actions, addressing a
resource, reading it, and modifying. The latter two actions are fairly self-explanatory. But what is
meant by "addressing" a resource?

"Addressing" a resource refers to taking an action that allows the user to determine whether a
resource at a given address actually exists. For example, the "read-children-names" operation lets a
user determine valid addresses. Trying to read a resource and getting a "Permission denied" error
also gives the user a clue that there actually is a resource at the requested address.

Some resources may include sensitive information as part of their address. For example, security
realm resources include the realm name as the last element in the address. That realm name is
potentially security sensitive; for example it is part of the data used when creating a hash of a user
password. Because some addresses may contain security sensitive data, a user needs permission to
even "address" a resource. If a user attempts to address a resource and does not have permission,
they will not receive a "permission denied" type error. Rather, the system will respond as if the
resource does not even exist, e.g. excluding the resource from the result of the "read-children-
names" operation or responding with a "No such resource" error instead of "Permission denied" if
the user is attempting to read or write the resource.

Another term for "addressing" a resource is "looking up" the resource.

7.3. Switching to the "rbac" provider
Use the CLI to switch the access-control provider.

Before changing the provider to "rbac", be sure your configuration has a user who
will be mapped to one of the RBAC roles, preferably with at least one in the
Administrator or SuperUser role. Otherwise your installation will not be
manageable except by shutting it down and editing the xml configuration. If you
have started with one of the standard xml configurations shipped with WildFly,
the "$local" user will be mapped to the "SuperUser" role and the "local"
authentication scheme will be enabled. This will allow a user running the CLI on
the same system as the WildFly process to have full administrative permissions.
Remote CLI users and web-based admin console users will have no permissions.

We recommend mapping at least one user besides "$local" before switching the provider to "rbac".
You can do all of the configuration associated with the "rbac" provider even when the provider is
set to "simple"

The management resources related to access control are located in the core-

service=management/access=authorization portion of the management resource tree. Update the
provider attribute to change between the "simple" and "rbac" providers. Any update requires a
reload or restart to take effect.

64

Detailed_Configuration.html#src-557240_DetailedConfiguration-authentication-local
Detailed_Configuration.html#src-557240_DetailedConfiguration-authentication-local
#src-557208_RBAC-role-mapping

[standalone@localhost:9990 /] cd core-service=management/access=authorization
[standalone@localhost:9990 access=authorization] :write-attribute(name=provider,value
=rbac)
{
 "outcome" => "success",
 "response-headers" => {
 "operation-requires-reload" => true,
 "process-state" => "reload-required"
 }
}
[standalone@localhost:9990 access=authorization] reload

In a managed domain, the access control configuration is part of the domain wide configuration, so
the resource address is the same as above, but the CLI is connected to the master Domain
Controller:

[domain@localhost:9990 /] cd core-service=management/access=authorization
[domain@localhost:9990 access=authorization] :write-attribute(name=provider,value=
rbac)
{
 "outcome" => "success",
 "response-headers" => {
 "operation-requires-reload" => true,
 "process-state" => "reload-required"
 },
 "result" => undefined,
 "server-groups" => {"main-server-group" => {"host" => {"master" => {
 "server-one" => {"response" => {
 "outcome" => "success",
 "response-headers" => {
 "operation-requires-reload" => true,
 "process-state" => "reload-required"
 }
 }},
 "server-two" => {"response" => {
 "outcome" => "success",
 "response-headers" => {
 "operation-requires-reload" => true,
 "process-state" => "reload-required"
 }
 }}
 }}}}
}
[domain@localhost:9990 access=authorization] reload --host=master

As with a standalone server, a reload or restart is required for the change to take effect. In this case,
all hosts and servers in the domain will need to be reloaded or restarted, starting with the master
Domain Controller, so be sure to plan well before making this change.

65

7.4. Mapping users and groups to roles
Once the "rbac" access control provider is enabled, only users who are mapped to one of the
available roles will have any administrative permissions at all. So, to make RBAC useful, a mapping
between individual users or groups of users and the available roles must be performed.

7.4.1. Mapping individual users

The easiest way to map individual users to roles is to use the web-based admin console.

Navigate to the "Administration" tab and the "Users" subtab. From there individual user mappings
can be added, removed, or edited.

The CLI can also be used to map individuals users to roles.

First, if one does not exist, create the parent resource for all mappings for a role. Here we create the
resource for the Administrator role.

[domain@localhost:9990 /] /core-service=management/access=authorization/role-mapping
=Administrator:add
{
 "outcome" => "success",
 "result" => undefined,
 "server-groups" => {"main-server-group" => {"host" => {"master" => {
 "server-one" => {"response" => {"outcome" => "success"}},
 "server-two" => {"response" => {"outcome" => "success"}}
 }}}}
}

Once this is done, map a user to the role:

66

[domain@localhost:9990 /] /core-service=management/access=authorization/role-mapping
=Administrator/include=user-jsmith:add(name=jsmith,type=USER)
{
 "outcome" => "success",
 "result" => undefined,
 "server-groups" => {"main-server-group" => {"host" => {"master" => {
 "server-one" => {"response" => {"outcome" => "success"}},
 "server-two" => {"response" => {"outcome" => "success"}}
 }}}}
}

Now if user jsmith authenticates to any security realm associated with the management interface
they are using, he will be mapped to the Administrator role.

To restrict the mapping to a particular security realm, change the realm attribute to the realm name.
This might be useful if different realms are associated with different management interfaces, and
the goal is to limit a user to a particular interface.

[domain@localhost:9990 /] /core-service=management/access=authorization/role-mapping
=Administrator/include=user-mjones:add(name=mjones,type=USER,realm=ManagementRealm)
{
 "outcome" => "success",
 "result" => undefined,
 "server-groups" => {"main-server-group" => {"host" => {"master" => {
 "server-one" => {"response" => {"outcome" => "success"}},
 "server-two" => {"response" => {"outcome" => "success"}}
 }}}}
}

7.4.2. User groups

A "group" is an arbitrary collection of users that may exist in the end user environment. They can
be named whatever the end user organization wants and can contain whatever users the end user
organization wants. Some of the authentication store types supported by WildFly security realms
include the ability to access information about what groups a user is a member of and associate this
information with the Subject produced when the user is authenticated. This is currently supported
for the following authentication store types:

• properties file (via the <realm_name>-groups.properties file)

• LDAP (via directory-server-specific configuration)

Groups are convenient when it comes to associating a user with a role, since entire groups can be
associated with a role in a single mapping.

7.4.3. Mapping groups to roles

The easiest way to map groups to roles is to use the web-based admin console.

67

Navigate to the "Administration" tab and the "Groups" subtab. From there group mappings can be
added, removed, or edited.

The CLI can also be used to map groups to roles. The only difference to individual user mapping is
the value of the type attribute should be GROUP instead of USER.

[domain@localhost:9990 /] /core-service=management/access=authorization/role-mapping
=Administrator/include=group-SeniorAdmins:add(name=SeniorAdmins,type=GROUP)
{
 "outcome" => "success",
 "result" => undefined,
 "server-groups" => {"main-server-group" => {"host" => {"master" => {
 "server-one" => {"response" => {"outcome" => "success"}},
 "server-two" => {"response" => {"outcome" => "success"}}
 }}}}
}

As with individual user mappings, the mapping can be restricted to users authenticating via a
particular security realm:

68

[domain@localhost:9990 /] /core-service=management/access=authorization/role-mapping
=Administrator/include=group-PowerAdmins:add(name=PowerAdmins,type=GROUP,realm
=ManagementRealm)
{
 "outcome" => "success",
 "result" => undefined,
 "server-groups" => {"main-server-group" => {"host" => {"master" => {
 "server-one" => {"response" => {"outcome" => "success"}},
 "server-two" => {"response" => {"outcome" => "success"}}
 }}}}
}

7.4.4. Including all authenticated users in a role

It’s possible to specify that all authenticated users should be mapped to a particular role. This could
be used, for example, to ensure that anyone who can authenticate can at least have Monitor
privileges.

A user who can authenticate to the management security realm but who does not
map to a role will not be able to perform any administrative functions, not even
reads.

In the web based admin console, navigate to the "Administration" tab, "Roles" subtab, highlight the
relevant role, click the "Edit" button and click on the "Include All" checkbox:

The same change can be made using the CLI:

69

[domain@localhost:9990 /] /core-service=management/access=authorization/role-mapping
=Monitor:write-attribute(name=include-all,value=true)
{
 "outcome" => "success",
 "result" => undefined,
 "server-groups" => {"main-server-group" => {"host" => {"master" => {
 "server-one" => {"response" => {"outcome" => "success"}},
 "server-two" => {"response" => {"outcome" => "success"}}
 }}}}
}

7.4.5. Excluding users and groups

It is also possible to explicitly exclude certain users and groups from a role. Exclusions take
precedence over inclusions, including cases where the include-all attribute is set to true for a role.

In the admin console, excludes are done in the same screens as includes. In the add dialog, simply
change the "Type" pulldown to "Exclude".

In the CLI, excludes are identical to includes, except the resource address has exclude instead of
include as the key for the last address element:

70

[domain@localhost:9990 /] /core-service=management/access=authorization/role-mapping
=Monitor/exclude=group-Temps:add(name=Temps,type=GROUP)
{
 "outcome" => "success",
 "result" => undefined,
 "server-groups" => {"main-server-group" => {"host" => {"master" => {
 "server-one" => {"response" => {"outcome" => "success"}},
 "server-two" => {"response" => {"outcome" => "success"}}
 }}}}
}

7.4.6. Users who map to multiple roles

It is possible that a given user will be mapped to more than one role. When this occurs, by default
the user will be granted the union of the permissions of the two roles. This behavior can be
changed on a global basis to instead respond to the user request with an error if this situation is
detected:

[standalone@localhost:9990 /] cd core-service=management/access=authorization
[standalone@localhost:9990 access=authorization] :write-attribute(name=permission-
combination-policy,value=rejecting)
{"outcome" => "success"}

Note that no reload is required; the change takes immediate effect.

To restore the default behavior, set the value to "permissive":

[standalone@localhost:9990 /] cd core-service=management/access=authorization
[standalone@localhost:9990 access=authorization] :write-attribute(name=permission-
combination-policy,value=permissive)
{"outcome" => "success"}

7.5. Adding custom roles in a managed domain
A managed domain may involve a variety of servers running different configurations and hosting
different applications. In such an environment, it is likely that there will be different teams of
administrators responsible for different parts of the domain. To allow organizations to grant
permissions to only parts of a domain, WildFly’s RBAC scheme allows for the creation of custom
"scoped roles". Scoped roles are based on the seven standard roles, but with permissions limited to
a portion of the domain – either to a set of server groups or to a set of hosts.

7.5.1. Server group scoped roles

The privileges for a server-group scoped role are constrained to resources associated with one or
more server groups. Server groups are often associated with a particular application or set of

71

applications; organizations that have separate teams responsible for different applications may
find server-group scoped roles useful.

A server-group scoped role is equivalent to the default role upon which it is based, but with
privileges constrained to target resources in the resource trees rooted in the server group
resources. The server-group scoped role can be configured to include privileges for the following
resources trees logically related to the server group:

• Profile

• Socket Binding Group

• Deployment

• Deployment override

• Server group

• Server config

• Server

Resources in the profile, socket binding group, server config and server portions of the tree that are
not logically related to a server group associated with the server-group scoped role will not be
addressable by a user in that role. So, in a domain with server groups "a" and "b", a user in a server-
group scoped role that grants access to "a" will not be able to address /server-group=b. The system
will treat that resource as non-existent for that user.

In addition to these privileges, users in a server-group scoped role will have non-sensitive read
privileges (equivalent to the Monitor role) for resources other than those listed above.

The easiest way to create a server-group scoped role is to use the admin console. But you can also
use the CLI to create a server-group scoped role.

[domain@localhost:9990 /] /core-service=management/access=authorization/server-group-
scoped-role=MainGroupAdmins:add(base-role=Administrator,server-groups=[main-server-
group])
{
 "outcome" => "success",
 "result" => undefined,
 "server-groups" => {"main-server-group" => {"host" => {"master" => {
 "server-one" => {"response" => {"outcome" => "success"}},
 "server-two" => {"response" => {"outcome" => "success"}}
 }}}}
}

Once the role is created, users or groups can be mapped to it the same as with the seven standard
roles.

7.5.2. Host scoped roles

The privileges for a host-scoped role are constrained to resources associated with one or more

72

#src-557208_RBAC-admin-console-scoped-roles

hosts. A user with a host-scoped role cannot modify the domain wide configuration. Organizations
may use host-scoped roles to give administrators relatively broad administrative rights for a host
without granting such rights across the managed domain.

A host-scoped role is equivalent to the default role upon which it is based, but with privileges
constrained to target resources in the resource trees rooted in the host resources for one or more
specified hosts.

In addition to these privileges, users in a host-scoped role will have non-sensitive read privileges
(equivalent to the Monitor role) for domain wide resources (i.e. those not in the /host=* section of
the tree.)

Resources in the /host=* portion of the tree that are unrelated to the hosts specified for the Host
Scoped Role will not be visible to users in that host-scoped role. So, in a domain with hosts "a" and
"b", a user in a host-scoped role that grants access to "a" will not be able to address /host=b. The
system will treat that resource as non-existent for that user.

The easiest way to create a host-scoped role is to use the admin console. But you can also use the
CLI to create a host scoped role.

[domain@localhost:9990 /] /core-service=management/access=authorization/host-scoped-
role=MasterOperators:add(base-role=Operator,hosts=[master]}
{
 "outcome" => "success",
 "result" => undefined,
 "server-groups" => {"main-server-group" => {"host" => {"master" => {
 "server-one" => {"response" => {"outcome" => "success"}},
 "server-two" => {"response" => {"outcome" => "success"}}
 }}}}
}

Once the role is created, users or groups can be mapped to it the same as with the seven standard
roles.

7.5.3. Using the admin console to create scoped roles

Both server-group and host scoped roles can be added, removed or edited via the admin console.
Select "Scoped Roles" from the "Administration" tab, "Roles" subtab:

73

#src-557208_RBAC-admin-console-scoped-roles

When adding a new scoped role, use the dialogue’s "Type" pull down to choose between a host
scoped role and a server-group scoped role. Then place the names of the relevant hosts or server
groups in the "Scope" text are.

7.6. Configuring constraints
The following factors are used to determine whether a given role is granted a permission:

• What the requested action is (address, read, write)

• Whether the resource, attribute or operation affects the persistent configuration

• Whether the resource, attribute or operation is related to the administrative audit logging

74

function

• Whether the resource, attribute or operation is configured as security sensitive

• Whether an attribute or operation parameter value has a security vault expression

• Whether a resource is considered to be associated with applications, as opposed to being part of
a general container configuration

The first three of these factors are non-configurable; the latter three allow some customization.

7.6.1. Configuring sensitivity

"Sensitivity" constraints are about restricting access to security-sensitive data. Different
organizations may have different opinions about what is security sensitive, so WildFly provides
configuration options to allow users to tailor these constraints.

Sensitive resources, attributes and operations

The developers of the WildFly core and of any subsystem may annotate resources, attributes or
operations with a "sensitivity classification". Classifications are either provided by the core and may
be applicable anywhere in the management model, or they are scoped to a particular subsystem.
For each classification, there will be a setting declaring whether by default the addressing, read and
write actions are considered to be sensitive. If an action is sensitive, only users in the roles able to
deal with sensitive data (Administrator, Auditor, SuperUser) will have permissions.

Using the CLI, administrators can see the settings for a classification. For example, there is a core
classification called "socket-config" that is applied to elements throughout the model that relate to
configuring sockets:

[domain@localhost:9990 /] cd core-service=management/access=authorization/constraint
=sensitivity-classification/type=core/classification=socket-config
[domain@localhost:9990 classification=socket-config] ls -l
ATTRIBUTE VALUE TYPE
configured-requires-addressable undefined BOOLEAN
configured-requires-read undefined BOOLEAN
configured-requires-write undefined BOOLEAN
default-requires-addressable false BOOLEAN
default-requires-read false BOOLEAN
default-requires-write true BOOLEAN

CHILD MIN-OCCURS MAX-OCCURS
applies-to n/a n/a

The various default-requires-… attributes indicate whether a user must be in a role that allows
security sensitive actions in order to perform the action. In the socket-config example above,
default-requires-write is true, while the others are false. So, by default modifying a setting
involving socket configuration is considered sensitive, while addressing those resources or doing
reads is not sensitive.

The default-requires-… attributes are read-only. The configured-requires-… attributes however

75

can be modified to override the default settings with ones appropriate for your organization. For
example, if your organization doesn’t regard modifying socket configuration settings to be security
sensitive, you can change that setting:

[domain@localhost:9990 classification=socket-config] :write-attribute(name=configured-
requires-write,value=false)
{
 "outcome" => "success",
 "result" => undefined,
 "server-groups" => {"main-server-group" => {"host" => {"master" => {
 "server-one" => {"response" => {"outcome" => "success"}},
 "server-two" => {"response" => {"outcome" => "success"}}
 }}}}
}

Administrators can also read the management model to see to which resources, attributes and
operations a particular sensitivity classification applies:

[domain@localhost:9990 classification=socket-config] :read-children-resources(child-
type=applies-to)
{
 "outcome" => "success",
 "result" => {
 "/host=master" => {
 "address" => "/host=master",
 "attributes" => [],
 "entire-resource" => false,
 "operations" => ["resolve-internet-address"]
 },
 "/host=master/core-service=host-environment" => {
 "address" => "/host=master/core-service=host-environment",
 "attributes" => [
 "host-controller-port",
 "host-controller-address",
 "process-controller-port",
 "process-controller-address"
],
 "entire-resource" => false,
 "operations" => []
 },
 "/host=master/core-service=management/management-interface=http-interface" =>
{
 "address" => "/host=master/core-service=management/management-
interface=http-interface",
 "attributes" => [
 "port",
 "secure-interface",
 "secure-port",
 "interface"

76

],
 "entire-resource" => false,
 "operations" => []
 },
 "/host=master/core-service=management/management-interface=native-interface"
=> {
 "address" => "/host=master/core-service=management/management-
interface=native-interface",
 "attributes" => [
 "port",
 "interface"
],
 "entire-resource" => false,
 "operations" => []
 },
 "/host=master/interface=*" => {
 "address" => "/host=master/interface=*",
 "attributes" => [],
 "entire-resource" => true,
 "operations" => ["resolve-internet-address"]
 },
 "/host=master/server-config=*/interface=*" => {
 "address" => "/host=master/server-config=*/interface=*",
 "attributes" => [],
 "entire-resource" => true,
 "operations" => []
 },
 "/interface=*" => {
 "address" => "/interface=*",
 "attributes" => [],
 "entire-resource" => true,
 "operations" => []
 },
 "/profile=*/subsystem=messaging/hornetq-server=*/broadcast-group=*" => {
 "address" => "/profile=*/subsystem=messaging/hornetq-server=*/broadcast-
group=*",
 "attributes" => [
 "group-address",
 "group-port",
 "local-bind-address",
 "local-bind-port"
],
 "entire-resource" => false,
 "operations" => []
 },
 "/profile=*/subsystem=messaging/hornetq-server=*/discovery-group=*" => {
 "address" => "/profile=*/subsystem=messaging/hornetq-server=*/discovery-
group=*",
 "attributes" => [
 "group-address",
 "group-port",

77

 "local-bind-address"
],
 "entire-resource" => false,
 "operations" => []
 },
 "/profile=*/subsystem=transactions" => {
 "address" => "/profile=*/subsystem=transactions",
 "attributes" => ["process-id-socket-max-ports"],
 "entire-resource" => false,
 "operations" => []
 },
 "/server-group=*" => {
 "address" => "/server-group=*",
 "attributes" => ["socket-binding-port-offset"],
 "entire-resource" => false,
 "operations" => []
 },
 "/socket-binding-group=*" => {
 "address" => "/socket-binding-group=*",
 "attributes" => [],
 "entire-resource" => true,
 "operations" => []
 }
 }
}

There will be a separate child for each address to which the classification applies. The entire-
resource attribute will be true if the classification applies to the entire resource. Otherwise, the
attributes and operations attributes will include the names of attributes or operations to which the
classification applies.

Classifications with broad use

Several of the core sensitivity classifications are commonly used across the management model and
deserve special mention.

Name Description

credential An attribute whose value is some sort of
credential, e.g. a password or a username. By
default sensitive for both reads and writes

security-domain-ref An attribute whose value is the name of a
security domain. By default sensitive for both
reads and writes

security-realm-ref An attribute whose value is the name of a
security realm. By default sensitive for both
reads and writes

socket-binding-ref An attribute whose value is the name of a socket
binding. By default not sensitive for any action

78

Name Description

socket-config A resource, attribute or operation that somehow
relates to configuring a socket. By default
sensitive for writes

Values with security vault expressions

By default any attribute or operation parameter whose value includes a security vault expression
will be treated as sensitive, even if no sensitivity classification applies or the classification does not
treat the action as sensitive.

This setting can be globally changed via the CLI. There is a resource for this configuration:

[domain@localhost:9990 /] cd core-service=management/access=authorization/constraint
=vault-expression
[domain@localhost:9990 constraint=vault-expression] ls -l
ATTRIBUTE VALUE TYPE
configured-requires-read undefined BOOLEAN
configured-requires-write undefined BOOLEAN
default-requires-read true BOOLEAN
default-requires-write true BOOLEAN

The various default-requires-… attributes indicate whether a user must be in a role that allows
security sensitive actions in order to perform the action. So, by default both reading and writing
attributes whose values include vault expressions requires a user to be in one of the roles with
sensitive data permissions.

The default-requires-… attributes are read-only. The configured-requires-… attributes however
can be modified to override the default settings with settings appropriate for your organization. For
example, if your organization doesn’t regard reading vault expressions to be security sensitive, you
can change that setting:

[domain@localhost:9990 constraint=vault-expression] :write-attribute(name=configured-
requires-read,value=false)
{
 "outcome" => "success",
 "result" => undefined,
 "server-groups" => {"main-server-group" => {"host" => {"master" => {
 "server-one" => {"response" => {"outcome" => "success"}},
 "server-two" => {"response" => {"outcome" => "success"}}
 }}}}
}

79

This vault-expression constraint overlaps somewhat with the core "credential"
sensitivity classification in that the most typical uses of a vault expression are in
attributes that contain a user name or password, and those will typically be
annotated with the "credential" sensitivity classification. So, if you change the
settings for the "credential" sensitivity classification you may also need to make a
corresponding change to the vault-expression constraint settings, or your change
will not have full effect.

Be aware though, that vault expressions can be used in any attribute that supports expressions, not
just in credential-type attributes. So it is important to be familiar with where and how your
organization uses vault expressions before changing these settings.

7.6.2. Configuring "Deployer" role access

The standard Deployer role has its write permissions limited to resources that are considered to be
"application resources"; i.e. conceptually part of an application and not part of the general server
configuration. By default, only deployment resources are considered to be application resources.
However, different organizations may have different opinions on what qualifies as an application
resource, so for resource types that subsystems authors consider potentially to be application
resources, WildFly provides a configuration option to declare them as such. Such resources will be
annotated with an "application classification".

For example, the mail subsystem provides such a classification:

[domain@localhost:9990 /] cd /core-service=management/access=authorization/constraint
=application-classification/type=mail/classification=mail-session
[domain@localhost:9990 classification=mail-session] ls -l
ATTRIBUTE VALUE TYPE
configured-application undefined BOOLEAN
default-application false BOOLEAN

CHILD MIN-OCCURS MAX-OCCURS
applies-to n/a n/a

Use read-resource or read-children-resources to see what resources have this classification applied:

[domain@localhost:9990 classification=mail-session] :read-children-resources(child-
type=applies-to)
{
 "outcome" => "success",
 "result" => {"/profile=*/subsystem=mail/mail-session=*" => {
 "address" => "/profile=*/subsystem=mail/mail-session=*",
 "attributes" => [],
 "entire-resource" => true,
 "operations" => []
 }}
}

80

#src-557208_RBAC-common-sensitivity-classifications
#src-557208_RBAC-common-sensitivity-classifications
#standard-rbac-roles

This indicates that this classification, intuitively enough, only applies to mail subsystem mail-
session resources.

To make resources with this classification writeable by users in the Deployer role, set the
configured-application attribute to true.

[domain@localhost:9990 classification=mail-session] :write-attribute(name=configured-
application,value=true)
{
 "outcome" => "success",
 "result" => undefined,
 "server-groups" => {"main-server-group" => {"host" => {"master" => {
 "server-one" => {"response" => {"outcome" => "success"}},
 "server-two" => {"response" => {"outcome" => "success"}}
 }}}}
}

Application classifications shipped with WildFly

The subsystems shipped with the full WildFly distribution include the following application
classifications:

Subsystem Classification

datasources data-source

datasources jdbc-driver

datasources xa-data-source

logging logger

logging logging-profile

mail mail-session

messaging jms-queue

messaging jms-topic

messaging queue

messaging security-setting

naming binding

resource-adapters resource-adapter

security security-domain

In each case the classification applies to the resources you would expect, given its name.

7.7. RBAC effect on administrator user experience
The RBAC scheme will result in reduced permissions for administrators who do not map to the
SuperUser role, so this will of course have some impact on their experience when using
administrative tools like the admin console and the CLI.

81

7.7.1. Admin console

The admin console takes great pains to provide a good user experience even when the user has
reduced permissions. Resources the user is not permitted to see will simply not be shown, or if
appropriate will be replaced in the UI with an indication that the user is not authorized. Interaction
units like "Add" and "Remove" buttons and "Edit" links will be suppressed if the user has no write
permissions.

7.7.2. CLI

The CLI is a much more unconstrained tool than the admin console is, allowing users to try to
execute whatever operations they wish, so it’s more likely that users who attempt to do things for
which they lack necessary permissions will receive failure messages. For example, a user in the
Monitor role cannot read passwords:

[domain@localhost:9990 /] /profile=default/subsystem=datasources/data-source=
ExampleDS:read-attribute(name=password)
{
 "outcome" => "failed",
 "result" => undefined,
 "failure-description" => "WFLYCTL0313: Unauthorized to execute operation 'read-
attribute' for resource '[
 (\"profile\" => \"default\"),
 (\"subsystem\" => \"datasources\"),
 (\"data-source\" => \"ExampleDS\")
]' -- \"WFLYCTL0332: Permission denied\"",
 "rolled-back" => true
}

If the user isn’t even allowed to address the resource then the response would be as if the resource
doesn’t exist, even though it actually does:

[domain@localhost:9990 /] /profile=default/subsystem=security/security-domain=other
:read-resource
{
 "outcome" => "failed",
 "failure-description" => "WFLYCTL0216: Management resource '[
 (\"profile\" => \"default\"),
 (\"subsystem\" => \"security\"),
 (\"security-domain\" => \"other\")
]' not found",
 "rolled-back" => true
}

This prevents unauthorized users fishing for sensitive data in resource addresses by checking for
"Permission denied" type failures.

Users who use the read-resource operation may ask for data, some of which they are allowed to see

82

#address-action

and some of which they are not. If this happens, the request will not fail, but inaccessible data will
be elided and a response header will be included advising on what was not included. Here we show
the effect of a Monitor trying to recursively read the security subsystem configuration:

[domain@localhost:9990 /] /profile=default/subsystem=security:read-resource(recursive
=true)
{
 "outcome" => "success",
 "result" => {
 "deep-copy-subject-mode" => undefined,
 "security-domain" => undefined,
 "vault" => undefined
 },
 "response-headers" => {"access-control" => [{
 "absolute-address" => [
 ("profile" => "default"),
 ("subsystem" => "security")
],
 "relative-address" => [],
 "filtered-attributes" => ["deep-copy-subject-mode"],
 "filtered-children-types" => ["security-domain"]
 }]}
}

The response-headers section includes access control data in a list with one element per relevant
resource. (In this case there’s just one.) The absolute and relative address of the resource is shown,
along with the fact that the value of the deep-copy-subject-mode attribute has been filtered (i.e.
undefined is shown as the value, which may not be the real value) as well as the fact that child
resources of type security-domain have been filtered.

7.7.3. Description of access control constraints in the management model

metadata

The management model descriptive metadata returned from operations like read-resource-

description and read-operation-description can be configured to include information describing
the access control constraints relevant to the resource, This is done by using the access-control
parameter. The output will be tailored to the caller’s permissions. For example, a user who maps to
the Monitor role could ask for information about a resource in the mail subsystem:

83

[domain@localhost:9990 /] cd /profile=default/subsystem=mail/mail-session=default
/server=smtp
[domain@localhost:9990 server=smtp] :read-resource-description(access-control=trim-
descriptions)
{
 "outcome" => "success",
 "result" => {
 "description" => undefined,
 "access-constraints" => {"application" => {"mail-session" => {"type" => "mail
"}}},
 "attributes" => undefined,
 "operations" => undefined,
 "children" => {},
 "access-control" => {
 "default" => {
 "read" => true,
 "write" => false,
 "attributes" => {
 "outbound-socket-binding-ref" => {
 "read" => true,
 "write" => false
 },
 "username" => {
 "read" => false,
 "write" => false
 },
 "tls" => {
 "read" => true,
 "write" => false
 },
 "ssl" => {
 "read" => true,
 "write" => false
 },
 "password" => {
 "read" => false,
 "write" => false
 }
 }
 },
 "exceptions" => {}
 }
 }
}

Because trim-descriptions was used as the value for the access-control parameter, the typical
"description", "attributes", "operations" and "children" data is largely suppressed. (For more on this,
see below.) The access-constraints field indicates that this resource is annotated with an
application constraint. The access-control field includes information about the permissions the

84

#access-control-param

current caller has for this resource. The default section shows the default settings for resources of
this type. The read and write fields directly under default show that the caller can, in general, read
this resource but cannot write it. The attributes section shows the individual attribute settings.
Note that Monitor cannot read the username and password attributes.

There are three valid values for the access-control parameter to read-resource-description and
read-operation-description:

• none – do not include access control information in the response. This is the default behavior if
no parameter is included.

• trim-descriptions – remove the normal description details, as shown in the example above

• combined-descriptions – include both the normal output and the access control data

7.8. Learning about your own role mappings
Users can learn in which roles they are operating. In the admin console, click on your name in the
top right corner; the roles you are in will be shown.

CLI users should use the whoami operation with the verbose attribute set:

[domain@localhost:9990 /] :whoami(verbose=true)
{
 "outcome" => "success",
 "result" => {
 "identity" => {
 "username" => "aadams",
 "realm" => "ManagementRealm"
 },
 "mapped-roles" => [
 "Maintainer"
]
 }
}

85

7.9. "Run-as" capability for SuperUsers
If a user maps to the SuperUser role, WildFly also supports letting that user request that they
instead map to one or more other roles. This can be useful when doing demos, or when the
SuperUser is changing the RBAC configuration and wants to see what effect the changes have from
the perspective of a user in another role. This capability is only available to the SuperUser role, so it
can only be used to narrow a user’s permissions, not to potentially increase them.

7.9.1. CLI run-as

With the CLI, run-as capability is on a per-request basis. It is done by using the "roles" operation
header, the value of which can be the name of a single role or a bracket-enclosed, comma-delimited
list of role names.

Example with a low level operation:

[standalone@localhost:9990 /] :whoami(verbose=true){roles=[Operator,Auditor]}
{
 "outcome" => "success",
 "result" => {
 "identity" => {
 "username" => "$local",
 "realm" => "ManagementRealm"
 },
 "mapped-roles" => [
 "Auditor",
 "Operator"
]
 }
}

Example with a CLI command:

[standalone@localhost:9990 /] deploy /tmp/helloworld.war --headers={roles=Monitor}
{"WFLYCTL0062: Composite operation failed and was rolled back. Steps that failed:" =>
{"Operation step-1" => "WFLYCTL0313: Unauthorized to execute operation 'add' for
resource '[(\"deployment\" => \"helloworld.war\")]' -- \"WFLYCTL0332: Permission
denied\""}}
[standalone@localhost:9990 /] deploy /tmp/helloworld.war --headers={roles=Maintainer}

Here we show the effect of switching to a role that isn’t granted the necessary permission.

7.9.2. Admin console run-as

Admin console users can change the role in which they operate by clicking on their name in the top
right corner and clicking on the "Run as…" link.

86

Then select the role in which you wish to operate:

The console will need to be restarted in order for the change to take effect.

7.9.3. Using run-as roles with the "simple" access control provider

This "run-as" capability is available even if the "simple" access control provider is used. When the
"simple" provider is used, any authenticated administrator is treated the same as if they would map
to SuperUser when the "rbac" provider is used.
However, the "simple" provider actually understands all of the "rbac" provider configuration
settings described above, but only makes use of them if the "run-as" capability is used for a request.
Otherwise, the SuperUser role has all permissions, so detailed configuration is irrelevant.

Using the run-as capability with the "simple" provider may be useful if an administrator is setting
up an rbac provider configuration before switching the provider to rbac to make that configuration
take effect. The administrator can then run-as different roles to see the effect of the planned
settings.

87

Chapter 8. Application deployment

8.1. Managed Domain
In a managed domain, deployments are associated with a server-group (see Core management
concepts). Any server within the server group will then be provided with that deployment.

The domain and host controller components manage the distribution of binaries across network
boundaries.

8.1.1. Deployment Commands

Distributing deployment binaries involves two steps: uploading the deployment to the repository
the domain controller will use to distribute its contents, and then assigning the deployment to one
or more server groups.

You can do this in one sweep with the CLI:

[domain@localhost:9990 /] deploy ~/Desktop/test-application.war
Either --all-server-groups or --server-groups must be specified.

[domain@localhost:9990 /] deploy ~/Desktop/test-application.war --all-server-groups
'test-application.war' deployed successfully.

The deployment will be available to the domain controller, assigned to a server group, and
deployed on all running servers in that group:

[domain@localhost:9990 /] :read-children-names(child-type=deployment)
{
 "outcome" => "success",
 "result" => [
 "mysql-connector-java-5.1.15.jar",
 "test-application.war"
]
}

[domain@localhost:9990 /] /server-group=main-server-group/deployment=test-application
.war:read-resource(include-runtime)
{
 "outcome" => "success",
 "result" => {
 "enabled" => true,
 "name" => "test-application.war",
 "managed" => true,
 "runtime-name" => "test-application.war"
 }
}

88

Core_management_concepts.html
Core_management_concepts.html

If you only want the deployment deployed on servers in some server groups, but not all, use the
--server-groups parameter instead of -all-server-groups:

[domain@localhost:9990 /] deploy ~/Desktop/test-application.war --server-groups=main-
server-group,another-group
'test-application.war' deployed successfully.

If you have a new version of the deployment that you want to deploy replacing an existing one, use
the --force parameter:

[domain@localhost:9990 /] deploy ~/Desktop/test-application.war --all-server-groups --
force
'test-application.war' deployed successfully.

You can remove binaries from server groups with the undeploy command:

[domain@localhost:9990 /] undeploy test-application.war --all-relevant-server-groups
Successfully undeployed test-application.war.

[domain@localhost:9990 /] /server-group=main-server-group:read-children-names(child-
type=deployment)
{
 "outcome" => "success",
 "result" => []
}

If you only want to undeploy from some server groups but not others, use the - server-groups
parameter instead of -all-relevant-server-groups.

The CLI deploy command supports a number of other parameters that can control behavior. Use the
--help parameter to learn more:

[domain@localhost:9990 /] deploy --help
[...]

Managing deployments through the web interface provides an alternate,
sometimes simpler approach.

8.1.2. Exploded managed deployments

Managed and unmanaged deployments can be 'exploded', i.e. on the filesystem in the form of a
directory structure whose structure corresponds to an unzipped version of the archive. An
exploded deployment can be convenient to administer if your administrative processes involve
inserting or replacing files from a base version in order to create a version tailored for a particular
use (for example, copy in a base deployment and then copy in a jboss-web.xml file to tailor a

89

deployment for use in WildFly.) Exploded deployments are also nice in some development
scenarios, as you can replace static content (e.g. .html, .css) files in the deployment and have the
new content visible immediately without requiring a redeploy.

Since unmanaged deployment content is directly in your charge, the following operations only
make sense for a managed deployment.

[domain@localhost:9990 /] /deployment=exploded.war:add(content=[{empty=true}])

This will create an empty exploded deployment to which you’ll be able to add content. The empty
content parameter is required to check that you really intend to create an empty deployment and
not just forget to define the content.

[domain@localhost:9990 /] /deployment=kitchensink.ear:explode()

This will 'explode' an existing archive deployment to its exploded format. This operation is not
recursive so you need to explode the sub-deployment if you want to be able to manipulate the sub-
deployment content. You can do this by specifying the sub-deployment archive path as a parameter
to the explode operation.

[domain@localhost:9990 /] /deployment=kitchensink.ear:explode(path=wildfly-
kitchensink-ear-web.war)

Now you can add or remove content to your exploded deployment. Note that per-default this will
overwrite existing contents, you can specify the overwrite parameter to make the operation fail if
the content already exists.

[domain@localhost:9990 /] /deployment=exploded.war:add-content(content=[{target-
path=WEB-
INF/classes/org/jboss/as/test/deployment/trivial/ServiceActivatorDeployment.class,
input-stream-
index=/home/demo/org/jboss/as/test/deployment/trivial/ServiceActivatorDeployment.class
}, {target-path=META-INF/MANIFEST.MF, input-stream-index=/home/demo/META-
INF/MANIFEST.MF}, {target-path=META-
INF/services/org.jboss.msc.service.ServiceActivator, input-stream-
index=/home/demo/META-INF/services/org.jboss.msc.service.ServiceActivator}])

Each content specifies a source content and the target path to which it will be copied relative to the
deployment root. With WildFly 11 you can use input-stream-index (which was a convenient way
to pass a stream of content) from the CLI by pointing it to a local file.

[domain@localhost:9990 /] /deployment=exploded.war:remove-content(paths=[WEB-
INF/classes/org/jboss/as/test/deployment/trivial/ServiceActivatorDeployment.class,
META-INF/MANIFEST.MF, META-INF/services/org.jboss.msc.service.ServiceActivator])

90

Now you can list the content of an exploded deployment, or just some part of it.

[domain@localhost:9990 /] /deployment=kitchensink.ear:browse-content(archive=false,
path=wildfly-kitchensink-ear-web.war)
{
 "outcome" => "success",
 "result" => [
 {
 "path" => "META-INF/",
 "directory" => true
 },
 {
 "path" => "META-INF/MANIFEST.MF",
 "directory" => false,
 "file-size" => 128L
 },
 {
 "path" => "WEB-INF/",
 "directory" => true
 },
 {
 "path" => "WEB-INF/templates/",
 "directory" => true
 },
 {
 "path" => "WEB-INF/classes/",
 "directory" => true
 },
 {
 "path" => "WEB-INF/classes/org/",
 "directory" => true
 },
 {
 "path" => "WEB-INF/classes/org/jboss/",
 "directory" => true
 },
 {
 "path" => "WEB-INF/classes/org/jboss/as/",
 "directory" => true
 },
 {
 "path" => "WEB-INF/classes/org/jboss/as/quickstarts/",
 "directory" => true
 },
 {
 "path" => "WEB-INF/classes/org/jboss/as/quickstarts/kitchensink_ear/",
 "directory" => true
 },
 {
 "path" => "WEB-

91

INF/classes/org/jboss/as/quickstarts/kitchensink_ear/controller/",
 "directory" => true
 },
 {
 "path" => "WEB-INF/classes/org/jboss/as/quickstarts/kitchensink_ear/rest/
",
 "directory" => true
 },
 {
 "path" => "WEB-INF/classes/org/jboss/as/quickstarts/kitchensink_ear/util/
",
 "directory" => true
 },
 {
 "path" => "resources/",
 "directory" => true
 },
 {
 "path" => "resources/css/",
 "directory" => true
 },
 {
 "path" => "resources/gfx/",
 "directory" => true
 },
 {
 "path" => "WEB-INF/templates/default.xhtml",
 "directory" => false,
 "file-size" => 2113L
 },
 {
 "path" => "WEB-INF/faces-config.xml",
 "directory" => false,
 "file-size" => 1365L
 },
 {
 "path" => "WEB-
INF/classes/org/jboss/as/quickstarts/kitchensink_ear/controller/MemberController.class
",
 "directory" => false,
 "file-size" => 2750L
 },
 {
 "path" => "WEB-
INF/classes/org/jboss/as/quickstarts/kitchensink_ear/rest/MemberResourceRESTService.cl
ass",
 "directory" => false,
 "file-size" => 6363L
 },
 {
 "path" => "WEB-

92

INF/classes/org/jboss/as/quickstarts/kitchensink_ear/rest/JaxRsActivator.class",
 "directory" => false,
 "file-size" => 464L
 },
 {
 "path" => "WEB-
INF/classes/org/jboss/as/quickstarts/kitchensink_ear/util/WebResources.class",
 "directory" => false,
 "file-size" => 667L
 },
 {
 "path" => "WEB-INF/beans.xml",
 "directory" => false,
 "file-size" => 1262L
 },
 {
 "path" => "index.xhtml",
 "directory" => false,
 "file-size" => 3603L
 },
 {
 "path" => "index.html",
 "directory" => false,
 "file-size" => 949L
 },
 {
 "path" => "resources/css/screen.css",
 "directory" => false,
 "file-size" => 4025L
 },
 {
 "path" => "resources/gfx/headerbkg.png",
 "directory" => false,
 "file-size" => 1147L
 },
 {
 "path" => "resources/gfx/asidebkg.png",
 "directory" => false,
 "file-size" => 1374L
 },
 {
 "path" => "resources/gfx/banner.png",
 "directory" => false,
 "file-size" => 41473L
 },
 {
 "path" => "resources/gfx/bkg-blkheader.png",
 "directory" => false,
 "file-size" => 116L
 },
 {

93

 "path" => "resources/gfx/rhjb_eap_logo.png",
 "directory" => false,
 "file-size" => 2637L
 },
 {
 "path" => "META-INF/maven/",
 "directory" => true
 },
 {
 "path" => "META-INF/maven/org.wildfly.quickstarts/",
 "directory" => true
 },
 {
 "path" => "META-INF/maven/org.wildfly.quickstarts/wildfly-kitchensink-ear-
web/",
 "directory" => true
 },
 {
 "path" => "META-INF/maven/org.wildfly.quickstarts/wildfly-kitchensink-ear-
web/pom.xml",
 "directory" => false,
 "file-size" => 4128L
 },
 {
 "path" => "META-INF/maven/org.wildfly.quickstarts/wildfly-kitchensink-ear-
web/pom.properties",
 "directory" => false,
 "file-size" => 146L
 }
]
}

You also have a read-content operation but since it returns a binary stream, this is not displayable
from the CLI.

[domain@localhost:9990 /] /deployment=kitchensink.ear:read-content(path=META-INF
/MANIFEST.MF)
{
 "outcome" => "success",
 "result" => {"uuid" => "b373d587-72ee-4b1e-a02a-71fbb0c85d32"},
 "response-headers" => {"attached-streams" => [{
 "uuid" => "b373d587-72ee-4b1e-a02a-71fbb0c85d32",
 "mime-type" => "text/plain"
 }]}
}

The management CLI however provides high level commands to display or save binary stream
attachments:

94

[domain@localhost:9990 /] attachment display --operation=
/deployment=kitchensink.ear:read-content(path=META-INF/MANIFEST.MF)
ATTACHMENT d052340a-abb7-4a66-aa24-4eeeb6b256be:
Manifest-Version: 1.0
Archiver-Version: Plexus Archiver
Built-By: mjurc
Created-By: Apache Maven 3.3.9
Build-Jdk: 1.8.0_91

[domain@localhost:9990 /] attachment save --operation=/deployment=kitchensink.ear:read
-content(path=META-INF/MANIFEST.MF) --file=example
File saved to /home/mjurc/wildfly/build/target/wildfly-11.0.0.Alpha1-SNAPSHOT/example

8.1.3. XML Configuration File

When you deploy content, the domain controller adds two types of entries to the domain.xml
configuration file, one showing global information about the deployment, and another for each
relevant server group showing how it is used by that server group:

[...]
<deployments>
 <deployment name="test-application.war"
 runtime-name="test-application.war">
 <content sha1="dda9881fa7811b22f1424b4c5acccb13c71202bd"/>
 </deployment>
</deployments>
[...]
<server-groups>
 <server-group name="main-server-group" profile="default">
 [...]
 <deployments>
 <deployment name="test-application.war" runtime-name="test-application.war
"/>
 </deployments>
 </server-group>
</server-groups>
[...]

~(See domain/configuration/domain.xml)~

8.2. Standalone Server
Deployments on a standalone server work in a similar way to those on managed domains. The
main difference is that there are no server group associations.

95

8.2.1. Deployment Commands

The same CLI commands used for managed domains work for standalone servers when deploying
and removing an application:

[standalone@localhost:9990 /] deploy ~/Desktop/test-application.war
'test-application.war' deployed successfully.

[standalone@localhost:9990 /] undeploy test-application.war
Successfully undeployed test-application.war.

8.2.2. Deploying Using the Deployment Scanner

Deployment content (for example, war, ear, jar, and sar files) can be placed in the
standalone/deployments directory of the WildFly distribution, in order to be automatically
deployed into the server runtime. For this to work the deployment-scanner subsystem must be
present. The scanner periodically checks the contents of the deployments directory and reacts to
changes by updating the server.

Users are encouraged to use the WildFly management APIs to upload and deploy
deployment content instead of relying on the deployment scanner that periodically
scans the directory, particularly if running production systems.

Deployment Scanner Modes

The WildFly filesystem deployment scanner operates in one of two different modes, depending on
whether it will directly monitor the deployment content in order to decide to deploy or redeploy it.

Auto-deploy mode:

The scanner will directly monitor the deployment content, automatically deploying new content
and redeploying content whose timestamp has changed. This is similiar to the behavior of previous
AS releases, although there are differences:

• A change in any file in an exploded deployment triggers redeploy. Because EE 6+ applications do
not require deployment descriptors,
there is no attempt to monitor deployment descriptors and only redeploy when a deployment
descriptor changes.

• The scanner will place marker files in this directory as an indication of the status of its attempts
to deploy or undeploy content. These are detailed below.

Manual deploy mode:

The scanner will not attempt to directly monitor the deployment content and decide if or when the
end user wishes the content to be deployed. Instead, the scanner relies on a system of marker files,
with the user’s addition or removal of a marker file serving as a sort of command telling the
scanner to deploy, undeploy or redeploy content.

96

Auto-deploy mode and manual deploy mode can be independently configured for zipped
deployment content and exploded deployment content. This is done via the "auto-deploy" attribute
on the deployment-scanner element in the standalone.xml configuration file:

<deployment-scanner scan-interval="5000" relative-to="jboss.server.base.dir"
 path="deployments" auto-deploy-zipped="true" auto-deploy-exploded="false"/>

By default, auto-deploy of zipped content is enabled, and auto-deploy of exploded content is
disabled. Manual deploy mode is strongly recommended for exploded content, as exploded content
is inherently vulnerable to the scanner trying to auto-deploy partially copied content.

Marker Files

The marker files always have the same name as the deployment content to which they relate, but
with an additional file suffix appended. For example, the marker file to indicate the example.war
file should be deployed is named example.war.dodeploy. Different marker file suffixes have
different meanings.

The relevant marker file types are:

File Purpose

.dodeploy Placed by the user to indicate that the given
content shouldbe deployed into the runtime (or
redeployed if alreadydeployed in the runtime.)

.skipdeploy Disables auto-deploy of the content for as long as
the fileis present. Most useful for allowing
updates to explodedcontent without having the
scanner initiate redeploy in themiddle of the
update. Can be used with zipped content aswell,
although the scanner will detect in-progress
changesto zipped content and wait until changes
are complete.

.isdeploying Placed by the deployment scanner service to
indicate that ithas noticed a .dodeploy file or
new or updated auto-deploymode content and is
in the process of deploying the content.This
marker file will be deleted when the deployment
processcompletes.

.deployed Placed by the deployment scanner service to
indicate that thegiven content has been
deployed into the runtime. If an enduser deletes
this file, the content will be undeployed.

97

File Purpose

.failed Placed by the deployment scanner service to
indicate that thegiven content failed to deploy
into the runtime. The contentof the file will
include some information about the cause ofthe
failure. Note that with auto-deploy mode,
removing thisfile will make the deployment
eligible for deployment again.

.isundeploying Placed by the deployment scanner service to
indicate that ithas noticed a .deployed file has
been deleted and thecontent is being
undeployed. This marker file will be
deletedwhen the undeployment process
completes.

.undeployed Placed by the deployment scanner service to
indicate that thegiven content has been
undeployed from the runtime. If an enduser
deletes this file, it has no impact.

.pending Placed by the deployment scanner service to
indicate that ithas noticed the need to deploy
content but has not yetinstructed the server to
deploy it. This file is created ifthe scanner
detects that some auto-deploy content is still
inthe process of being copied or if there is some
problem thatprevents auto-deployment. The
scanner will not instruct theserver to deploy or
undeploy any content (not just thedirectly
affected content) as long as this condition holds.

Basic workflows:

All examples assume variable $JBOSS_HOME points to the root of the WildFly distribution.

A. Add new zipped content and deploy it:

1. cp target/example.war/ $JBOSS_HOME/standalone/deployments

2. (Manual mode only) touch $JBOSS_HOME/standalone/deployments/example.war.dodeploy

B. Add new unzipped content and deploy it:

a. cp -r target/example.war/ $JBOSS_HOME/standalone/deployments

b. (Manual mode only) touch $JBOSS_HOME/standalone/deployments/example.war.dodeploy

C. Undeploy currently deployed content:

a. rm $JBOSS_HOME/standalone/deployments/example.war.deployed

D. Auto-deploy mode only: Undeploy currently deployed content:

a. rm $JBOSS_HOME/standalone/deployments/example.war

E. Replace currently deployed zipped content with a new version and deploy it:

a. cp target/example.war/ $JBOSS_HOME/standalone/deployments

98

b. (Manual mode only) touch $JBOSS_HOME/standalone/deployments/example.war.dodeploy

F. Manual mode only: Replace currently deployed unzipped content with a new version and
deploy it:

a. rm $JBOSS_HOME/standalone/deployments/example.war.deployed

b. wait for $JBOSS_HOME/standalone/deployments/example.war.undeployed file to appear

c. cp -r target/example.war/ $JBOSS_HOME/standalone/deployments

d. touch $JBOSS_HOME/standalone/deployments/example.war.dodeploy

G. Auto-deploy mode only: Replace currently deployed unzipped content with a new version and
deploy it:

a. touch $JBOSS_HOME/standalone/deployments/example.war.skipdeploy

b. cp -r target/example.war/ $JBOSS_HOME/standalone/deployments

c. rm $JBOSS_HOME/standalone/deployments/example.war.skipdeploy

H. Manual mode only: Live replace portions of currently deployed unzipped content without
redeploying:

a. cp -r target/example.war/foo.html $JBOSS_HOME/standalone/deployments/example.war

I. Auto-deploy mode only: Live replace portions of currently deployed unzipped content without
redeploying:

a. touch $JBOSS_HOME/standalone/deployments/example.war.skipdeploy

b. cp -r target/example.war/foo.html $JBOSS_HOME/standalone/deployments/example.war

J. Manual or auto-deploy mode: Redeploy currently deployed content (i.e. bounce it with no
content change):

a. touch $JBOSS_HOME/standalone/deployments/example.war.dodeploy

K. Auto-deploy mode only: Redeploy currently deployed content (i.e. bounce it with no content
change):

a. touch $JBOSS_HOME/standalone/deployments/example.war

The above examples use Unix shell commands. Windows equivalents are: cp src
dest -→ xcopy /y src dest
cp -r src dest -→ xcopy /e /s /y src dest
rm afile -→ del afile
touch afile -→ echo>> afile

Note that the behavior of 'touch' and 'echo' are different but the differences are not relevant to the
usages in the examples above.

8.3. Managed and Unmanaged Deployments
WildFly supports two mechanisms for dealing with deployment content – managed and
unmanaged deployments.

With a managed deployment the server takes the deployment content and copies it into an internal

99

content repository and thereafter uses that copy of the content, not the original user-provided
content. The server is thereafter responsible for the content it uses.

With an unmanaged deployment the user provides the local filesystem path of deployment content,
and the server directly uses that content. However the user is responsible for ensuring that content,
e.g. for making sure that no changes are made to it that will negatively impact the functioning of
the deployed application.

To help you differentiate managed from unmanaged deployments the deployment model has a
runtime boolean attribute 'managed'.

Managed deployments have a number of benefits over unmanaged:

• They can be manipulated by remote management clients, not requiring access to the server
filesystem.

• In a managed domain, WildFly/EAP will take responsibility for replicating a copy of the
deployment to all hosts/servers in the domain where it is needed. With an unmanaged
deployment, it is the user’s responsibility to have the deployment available on the local
filesystem on all relevant hosts, at a consistent path.

• The deployment content actually used is stored on the filesystem in the internal content
repository, which should help shelter it from unintended changes.

All of the previous examples above illustrate using managed deployments, except for any
discussion of deployment scanner handling of exploded deployments. In WildFly 10 and earlier
exploded deployments are always unmanaged, this is no longer the case since WildFly 11.

8.3.1. Content Repository

For a managed deployment, the actual file the server uses when creating runtime services is not the
file provided to the CLI deploy command or to the web console. It is a copy of that file stored in an
internal content repository. The repository is located in the domain/data/content directory for a
managed domain, or in standalone/data/content for a standalone server. Actual binaries are stored
in a subdirectory:

ls domain/data/content/
 |---/47
 |-----95cc29338b5049e238941231b36b3946952991
 |---/dd
 |-----a9881fa7811b22f1424b4c5acccb13c71202bd

The location of the content repository and its internal structure is subject to
change at any time and should not be relied upon by end users.

The description of a managed deployment in the domain or standalone configuration file includes
an attribute recording the SHA1 hash of the deployment content:

100

<deployments>
 <deployment name="test-application.war"
 runtime-name="test-application.war">
 <content sha1="dda9881fa7811b22f1424b4c5acccb13c71202bd"/>
 </deployment>
</deployments>

The WildFly process calculates and records that hash when the user invokes a management
operation (e.g. CLI deploy command or using the console) providing deployment content. The user is
not expected to calculate the hash.

The sha1 attribute in the content element tells the WildFly process where to find the deployment
content in its internal content repository.

In a domain each host will have a copy of the content needed by its servers in its own local content
repository. The WildFly domain controller and slave host controller processes take responsibility
for ensuring each host has the needed content.

8.3.2. Unmanaged Deployments

An unmanaged deployment is one where the server directly deploys the content at a path you
specify instead of making an internal copy and then deploying the copy.

Initially deploying an unmanaged deployment is much like deploying a managed one, except you
tell WildFly that you do not want the deployment to be managed:

[standalone@localhost:9990 /] deploy ~/Desktop/test-application.war --unmanaged
'test-application.war' deployed successfully.

When you do this, instead of the server making a copy of the content at /Desktop/test-
application.war, calculating the hash of the content, storing the hash in the configuration file and
then installing the copy into the runtime, instead it will convert /Desktop/test-application.war to
an absolute path, store the path in the configuration file, and then install the original content in the
runtime.

You can also use unmanaged deployments in a domain:

[domain@localhost:9990 /] deploy /home/example/Desktop/test-application.war --server
-group=main-server-group --unmanaged
'test-application.war' deployed successfully.

However, before you run this command you must ensure that a copy of the content is present on all
machines that have servers in the target server groups, all at the same filesystem path. The domain
will not copy the file for you.

Undeploy is no different from a managed undeploy:

101

[standalone@localhost:9990 /] undeploy test-application.war
Successfully undeployed test-application.war.

Doing a replacement of the deployment with a new version is a bit different, the server is using the
file you want to replace. You should undeploy the deployment, replace the content, and then deploy
again. Or you can stop the server, replace the deployment and deploy again.

8.4. Deployment Overlays
Deployment overlays are our way of 'overlaying' content into an existing deployment, without
physically modifying the contents of the deployment archive. Possible use cases include swapping
out deployment descriptors, modifying static web resources to change the branding of an
application, or even replacing jar libraries with different versions.

Deployment overlays have a different lifecycle to a deployment. In order to use a deployment
overlay, you first create the overlay, using the CLI or the management API. You then add files to the
overlay, specifying the deployment paths you want them to overlay. Once you have created the
overlay you then have to link it to a deployment name (which is done slightly differently depending
on if you are in standalone or domain mode). Once you have created the link any deployment that
matches the specified deployment name will have the overlay applied.

When you modify or create an overlay it will not affect existing deployments, they must be
redeployed in order to take effect

8.4.1. Creating a deployment overlay

To create a deployment overlay the CLI provides a high level command to do all the steps specified
above in one go. An example command is given below for both standalone and domain mode:

deployment-overlay add --name=myOverlay --content=/WEB-INF/web.xml=/myFiles/myWeb.xml
,/WEB-INF/ejb-jar.xml=/myFiles/myEjbJar.xml --deployments=test.war,*-admin.war --
redeploy-affected

deployment-overlay add --name=myOverlay --content=/WEB-INF/web.xml=/myFiles/myWeb.xml
,/WEB-INF/ejb-jar.xml=/myFiles/myEjbJar.xml --deployments=test.war,*-admin.war --
server-groups=main-server-group --redeploy-affected

102

Chapter 9. Subsystem configuration
Subsystem configuration reference :author: tcerar@redhat.com :icons: font :source-highlighter:
coderay :toc: macro :toclevels: 2

The following chapters will focus on the high level management use cases that are available
through the CLI and the web interface. For a detailed description of each subsystem configuration
property, please consult the respective component reference.

Schema Location

 The configuration schemas can found in $JBOSS_HOME/docs/schema.

9.1. EE Subsystem Configuration
The EE subsystem provides common functionality in the Java EE platform, such as the EE
Concurrency Utilities (JSR 236) and @Resource injection. The subsystem is also responsible for
managing the lifecycle of Java EE application’s deployments, that is, .ear files.

The EE subsystem configuration may be used to:

• customise the deployment of Java EE applications

• create EE Concurrency Utilities instances

• define the default bindings

The subsystem name is ee and this document covers EE subsystem version 2.0, which XML
namespace within WildFly XML configurations is urn:jboss:domain:ee:2.0. The path for the
subsystem’s XML schema, within WildFly’s distribution, is docs/schema/jboss-as-ee_2_0.xsd.

Subsystem XML configuration example with all elements and attributes specified:

<subsystem xmlns="urn:jboss:domain:ee:2.0" >
 <global-modules>
 <module name="org.jboss.logging"
 slot="main"/>
 <module name="org.apache.log4j"
 annotations="true"
 meta-inf="true"
 services="false" />
 </global-modules>
 <ear-subdeployments-isolated>true</ear-subdeployments-isolated>
 <spec-descriptor-property-replacement>false</spec-descriptor-property-replacement>
 <jboss-descriptor-property-replacement>false</jboss-descriptor-property-
replacement>
 <annotation-property-replacement>false</annotation-property-replacement>
 <concurrent>
 <context-services>
 <context-service

103

mailto:tcerar@redhat.com

 name="default"
 jndi-name="java:jboss/ee/concurrency/context/default"
 use-transaction-setup-provider="true" />
 </context-services>
 <managed-thread-factories>
 <managed-thread-factory
 name="default"
 jndi-name="java:jboss/ee/concurrency/factory/default"
 context-service="default"
 priority="1" />
 </managed-thread-factories>
 <managed-executor-services>
 <managed-executor-service
 name="default"
 jndi-name="java:jboss/ee/concurrency/executor/default"
 context-service="default"
 thread-factory="default"
 hung-task-threshold="60000"
 core-threads="5"
 max-threads="25"
 keepalive-time="5000"
 queue-length="1000000"
 reject-policy="RETRY_ABORT" />
 </managed-executor-services>
 <managed-scheduled-executor-services>
 <managed-scheduled-executor-service
 name="default"
 jndi-name="java:jboss/ee/concurrency/scheduler/default"
 context-service="default"
 thread-factory="default"
 hung-task-threshold="60000"
 core-threads="5"
 keepalive-time="5000"
 reject-policy="RETRY_ABORT" />
 </managed-scheduled-executor-services>
 </concurrent>
 <default-bindings
 context-service="java:jboss/ee/concurrency/context/default"
 datasource="java:jboss/datasources/ExampleDS"
 jms-connection-factory="java:jboss/DefaultJMSConnectionFactory"
 managed-executor-service="java:jboss/ee/concurrency/executor/default"
 managed-scheduled-executor-service=
"java:jboss/ee/concurrency/scheduler/default"
 managed-thread-factory="java:jboss/ee/concurrency/factory/default" />
</subsystem>

Java EE Application Deployment

The EE subsystem configuration allows the customisation of the deployment behaviour for Java EE
Applications.

104

Global Modules

Global modules is a set of JBoss Modules that will be added as dependencies to the JBoss Module of
every Java EE deployment. Such dependencies allows Java EE deployments to see the classes
exported by the global modules.

Each global module is defined through the module resource, an example of its XML configuration:

 <global-modules>
 <module name="org.jboss.logging" slot="main"/>
 <module name="org.apache.log4j" annotations="true" meta-inf="true" services="
false" />
 </global-modules>

The only mandatory attribute is the JBoss Module name, the slot attribute defaults to main, and both
define the JBoss Module ID to reference.

The optional annotations attribute, which defaults to false, indicates if a pre-computed annotation
index should be imported from META-INF/jandex.idx

The optional services attribute indicates if any services exposed in META-INF/services should be
made available to the deployments class loader, and defaults to false.

The optional meta-inf attribute, which defaults to true, indicates if the Module’s META-INF path
should be available to the deployment’s class loader.

EAR Subdeployments Isolation

A flag indicating whether each of the subdeployments within a .ear can access classes belonging to
another subdeployment within the same .ear. The default value is false, which allows the
subdeployments to see classes belonging to other subdeployments within the .ear.

 <ear-subdeployments-isolated>true</ear-subdeployments-isolated>

For example:

myapp.ear
|
|--- web.war
|
|--- ejb1.jar
|
|--- ejb2.jar

If the ear-subdeployments-isolated is set to false, then the classes in web.war can access classes
belonging to ejb1.jar and ejb2.jar. Similarly, classes from ejb1.jar can access classes from ejb2.jar
(and vice-versa).

105

This flag has no effect on the isolated classloader of the .war file(s), i.e. irrespective
of whether this flag is set to true or false, the .war within a .ear will have a
isolated classloader, and other subdeployments within that .ear will not be able to
access classes from that .war. This is as per spec.

Property Replacement

The EE subsystem configuration includes flags to configure whether system property replacement
will be done on XML descriptors and Java Annotations included in Java EE deployments.

System properties etc are resolved in the security context of the application server
itself, not the deployment that contains the file. This means that if you are running
with a security manager and enable this property, a deployment can potentially
access system properties or environment entries that the security manager would
have otherwise prevented.

Spec Descriptor Property Replacement

Flag indicating whether system property replacement will be performed on standard Java EE XML
descriptors. If not configured this defaults to true, however it is set to false in the standard
configuration files shipped with WildFly.

 <spec-descriptor-property-replacement>false</spec-descriptor-property-replacement>

JBoss Descriptor Property Replacement

Flag indicating whether system property replacement will be performed on WildFly proprietary
XML descriptors, such as jboss-app.xml. This defaults to true.

 <jboss-descriptor-property-replacement>false</jboss-descriptor-property-replacement>

Annotation Property Replacement

Flag indicating whether system property replacement will be performed on Java annotations. The
default value is false.

 <annotation-property-replacement>false</annotation-property-replacement>

EE Concurrency Utilities

EE Concurrency Utilities (JSR 236) were introduced with Java EE 7, to ease the task of writing
multithreaded Java EE applications. Instances of these utilities are managed by WildFly, and the
related configuration provided by the EE subsystem.

106

Context Services

The Context Service is a concurrency utility which creates contextual proxies from existent objects.
WildFly Context Services are also used to propagate the context from a Java EE application
invocation thread, to the threads internally used by the other EE Concurrency Utilities. Context
Service instances may be created using the subsystem XML configuration:

 <context-services>
 <context-service
 name="default"
 jndi-name="java:jboss/ee/concurrency/context/default"
 use-transaction-setup-provider="true" />
 </context-services>

The name attribute is mandatory, and it’s value should be a unique name within all Context Services.

The jndi-name attribute is also mandatory, and defines where in the JNDI the Context Service should
be placed.

The optional use-trasaction-setup-provider attribute indicates if the contextual proxies built by the
Context Service should suspend transactions in context, when invoking the proxy objects, and its
value defaults to true.

Management clients, such as the WildFly CLI, may also be used to configure Context Service
instances. An example to add and remove one named other:

/subsystem=ee/context-service=other:add(jndi-name=java\:jboss\/ee\/concurrency\/other)
/subsystem=ee/context-service=other:remove

Managed Thread Factories

The Managed Thread Factory allows Java EE applications to create new threads. WildFly Managed
Thread Factory instances may also, optionally, use a Context Service instance to propagate the Java
EE application thread’s context to the new threads. Instance creation is done through the EE
subsystem, by editing the subsystem XML configuration:

 <managed-thread-factories>
 <managed-thread-factory
 name="default"
 jndi-name="java:jboss/ee/concurrency/factory/default"
 context-service="default"
 priority="1" />
 </managed-thread-factories>

The name attribute is mandatory, and it’s value should be a unique name within all Managed Thread
Factories.

The jndi-name attribute is also mandatory, and defines where in the JNDI the Managed Thread

107

Factory should be placed.

The optional context-service references an existent Context Service by its name. If specified then
thread created by the factory will propagate the invocation context, present when creating the
thread.

The optional priority indicates the priority for new threads created by the factory, and defaults to
5.

Management clients, such as the WildFly CLI, may also be used to configure Managed Thread
Factory instances. An example to add and remove one named other:

/subsystem=ee/managed-thread-factory=other:add(jndi-name=java\:jboss\/ee\/factory\
/other)
/subsystem=ee/managed-thread-factory=other:remove

Managed Executor Services

The Managed Executor Service is the Java EE adaptation of Java SE Executor Service, providing to
Java EE applications the functionality of asynchronous task execution. WildFly is responsible to
manage the lifecycle of Managed Executor Service instances, which are specified through the EE
subsystem XML configuration:

 <managed-executor-services>
 <managed-executor-service
 name="default"
 jndi-name="java:jboss/ee/concurrency/executor/default"
 context-service="default"
 thread-factory="default"
 hung-task-threshold="60000"
 core-threads="5"
 max-threads="25"
 keepalive-time="5000"
 queue-length="1000000"
 reject-policy="RETRY_ABORT" />
 </managed-executor-services>

The name attribute is mandatory, and it’s value should be a unique name within all Managed
Executor Services.

The jndi-name attribute is also mandatory, and defines where in the JNDI the Managed Executor
Service should be placed.

The optional context-service references an existent Context Service by its name. If specified then the
referenced Context Service will capture the invocation context present when submitting a task to
the executor, which will then be used when executing the task.

The optional thread-factory references an existent Managed Thread Factory by its name, to handle
the creation of internal threads. If not specified then a Managed Thread Factory with default

108

configuration will be created and used internally.

The mandatory core-threads provides the number of threads to keep in the executor’s pool, even if
they are idle. A value of 0 means there is no limit.

The optional queue-length indicates the number of tasks that can be stored in the input queue. The
default value is 0, which means the queue capacity is unlimited.

The executor’s task queue is based on the values of the attributes core-threads and queue-length:

• If queue-length is 0, or queue-length is Integer.MAX_VALUE (2147483647) and core-threads is 0,
direct handoff queuing strategy will be used and a synchronous queue will be created.

• If queue-length is Integer.MAX_VALUE but core-threads is not 0, an unbounded queue will be used.

• For any other valid value for queue-length, a bounded queue wil be created.

The optional hung-task-threshold defines a threshold value, in milliseconds, to hung a possibly
blocked task. A value of 0 will never hung a task, and is the default.

The optional long-running-tasks is a hint to optimize the execution of long running tasks, and
defaults to false.

The optional max-threads defines the the maximum number of threads used by the executor, which
defaults to Integer.MAX_VALUE (2147483647).

The optional keepalive-time defines the time, in milliseconds, that an internal thread may be idle.
The attribute default value is 60000.

The optional reject-policy defines the policy to use when a task is rejected by the executor. The
attribute value may be the default ABORT, which means an exception should be thrown, or
RETRY_ABORT, which means the executor will try to submit it once more, before throwing an
exception.

Management clients, such as the WildFly CLI, may also be used to configure Managed Executor
Service instances. An example to add and remove one named other:

/subsystem=ee/managed-executor-service=other:add(jndi-name=java\:jboss\/ee\/executor\
/other, core-threads=2)
/subsystem=ee/managed-executor-service=other:remove

Managed Scheduled Executor Services

The Managed Scheduled Executor Service is the Java EE adaptation of Java SE Scheduled Executor
Service, providing to Java EE applications the functionality of scheduling task execution. WildFly is
responsible to manage the lifecycle of Managed Scheduled Executor Service instances, which are
specified through the EE subsystem XML configuration:

109

 <managed-scheduled-executor-services>
 <managed-scheduled-executor-service
 name="default"
 jndi-name="java:jboss/ee/concurrency/scheduler/default"
 context-service="default"
 thread-factory="default"
 hung-task-threshold="60000"
 core-threads="5"
 keepalive-time="5000"
 reject-policy="RETRY_ABORT" />
 </managed-scheduled-executor-services>

The name attribute is mandatory, and it’s value should be a unique name within all Managed
Scheduled Executor Services.

The jndi-name attribute is also mandatory, and defines where in the JNDI the Managed Scheduled
Executor Service should be placed.

The optional context-service references an existent Context Service by its name. If specified then the
referenced Context Service will capture the invocation context present when submitting a task to
the executor, which will then be used when executing the task.

The optional thread-factory references an existent Managed Thread Factory by its name, to handle
the creation of internal threads. If not specified then a Managed Thread Factory with default
configuration will be created and used internally.

The mandatory core-threads provides the number of threads to keep in the executor’s pool, even if
they are idle. A value of 0 means there is no limit.

The optional hung-task-threshold defines a threshold value, in milliseconds, to hung a possibly
blocked task. A value of 0 will never hung a task, and is the default.

The optional long-running-tasks is a hint to optimize the execution of long running tasks, and
defaults to false.

The optional keepalive-time defines the time, in milliseconds, that an internal thread may be idle.
The attribute default value is 60000.

The optional reject-policy defines the policy to use when a task is rejected by the executor. The
attribute value may be the default ABORT, which means an exception should be thrown, or
RETRY_ABORT, which means the executor will try to submit it once more, before throwing an
exception.

Management clients, such as the WildFly CLI, may also be used to configure Managed Scheduled
Executor Service instances. An example to add and remove one named other:

110

/subsystem=ee/managed-scheduled-executor-service=other:add(jndi-name=java\:jboss\/ee\
/scheduler\/other, core-threads=2)
/subsystem=ee/managed-scheduled-executor-service=other:remove

Default EE Bindings

The Java EE Specification mandates the existence of a default instance for each of the following
resources:

• Context Service

• Datasource

• JMS Connection Factory

• Managed Executor Service

• Managed Scheduled Executor Service

• Managed Thread Factory

The EE subsystem looks up the default instances from JNDI, using the names in the default bindings
configuration, before placing those in the standard JNDI names, such as
java:comp/DefaultManagedExecutorService:

 <default-bindings
 context-service="java:jboss/ee/concurrency/context/default"
 datasource="java:jboss/datasources/ExampleDS"
 jms-connection-factory="java:jboss/DefaultJMSConnectionFactory"
 managed-executor-service="java:jboss/ee/concurrency/executor/default"
 managed-scheduled-executor-service="java:jboss/ee/concurrency/scheduler/default"
 managed-thread-factory="java:jboss/ee/concurrency/factory/default" />

The default bindings are optional, if the jndi name for a default binding is not
configured then the related resource will not be available to Java EE applications.

9.2. Naming Subsystem Configuration
The Naming subsystem provides the JNDI implementation on WildFly, and its configuration allows
to:

• bind entries in global JNDI namespaces

• turn off/on the remote JNDI interface

The subsystem name is naming and this document covers Naming subsystem version 2.0, which
XML namespace within WildFly XML configurations is urn:jboss:domain:naming:2.0. The path for
the subsystem’s XML schema, within WildFly’s distribution, is docs/schema/jboss-as-naming_2_0.xsd.

Subsystem XML configuration example with all elements and attributes specified:

111

<subsystem xmlns="urn:jboss:domain:naming:2.0">
 <bindings>
 <simple name="java:global/a" value="100" type="int" />
 <simple name="java:global/jboss.org/docs/url" value="https://docs.jboss.org"
type="java.net.URL" />
 <object-factory name="java:global/foo/bar/factory" module="org.foo.bar" class
="org.foo.bar.ObjectFactory" />
 <external-context name="java:global/federation/ldap/example" class=
"javax.naming.directory.InitialDirContext" cache="true">
 <environment>
 <property name="java.naming.factory.initial" value=
"com.sun.jndi.ldap.LdapCtxFactory" />
 <property name="java.naming.provider.url" value=
"ldap://ldap.example.com:389" />
 <property name="java.naming.security.authentication" value="simple" />
 <property name="java.naming.security.principal" value=
"uid=admin,ou=system" />
 <property name="java.naming.security.credentials" value="secret" />
 </environment>
 </external-context>
 <lookup name="java:global/c" lookup="java:global/b" />
 </bindings>
 <remote-naming/>
</subsystem>

9.2.1. Global Bindings Configuration

The Naming subsystem configuration allows binding entries into the following global JNDI
namespaces:

• java:global

• java:jboss

• java:

If WildFly is to be used as a Java EE application server, then it’s recommended to
opt for java:global, since it is a standard (i.e. portable) namespace.

Four different types of bindings are supported:

• Simple

• Object Factory

• External Context

• Lookup

In the subsystem’s XML configuration, global bindings are configured through the <bindings />
XML element, as an example:

112

<bindings>
 <simple name="java:global/a" value="100" type="int" />
 <object-factory name="java:global/foo/bar/factory" module="org.foo.bar" class=
"org.foo.bar.ObjectFactory" />
 <external-context name="java:global/federation/ldap/example" class=
"javax.naming.directory.InitialDirContext" cache="true">
 <environment>
 <property name="java.naming.factory.initial" value=
"com.sun.jndi.ldap.LdapCtxFactory" />
 <property name="java.naming.provider.url" value=
"ldap://ldap.example.com:389" />
 <property name="java.naming.security.authentication" value="simple" />
 <property name="java.naming.security.principal" value="
uid=admin,ou=system" />
 <property name="java.naming.security.credentials" value="secret" />
 </environment>
 </external-context>
 <lookup name="java:global/c" lookup="java:global/b" />
</bindings>

Simple Bindings

A simple binding is a primitive or java.net.URL entry, and it is defined through the simple XML
element. An example of its XML configuration:

<simple name="java:global/a" value="100" type="int" />

The name attribute is mandatory and specifies the target JNDI name for the entry.

The value attribute is mandatory and defines the entry’s value.

The optional type attribute, which defaults to java.lang.String, specifies the type of the entry’s
value. Besides java.lang.String, allowed types are all the primitive types and their corresponding
object wrapper classes, such as int or java.lang.Integer, and java.net.URL.

Management clients, such as the WildFly CLI, may be used to configure simple bindings. An
example to add and remove the one in the XML example above:

/subsystem=naming/binding=java\:global\/a:add(binding-type=simple, type=int, value=
100)
/subsystem=naming/binding=java\:global\/a:remove

Object Factories

The Naming subsystem configuration allows the binding of javax.naming.spi.ObjectFactory entries,
through the object-factory XML element, for instance:

113

<object-factory name="java:global/foo/bar/factory" module="org.foo.bar" class=
"org.foo.bar.ObjectFactory">
 <environment>
 <property name="p1" value="v1" />
 <property name="p2" value="v2" />
 </environment>
</object-factory>

The name attribute is mandatory and specifies the target JNDI name for the entry.

The class attribute is mandatory and defines the object factory’s Java type.

The module attribute is mandatory and specifies the JBoss Module ID where the object factory Java
class may be loaded from.

The optional environment child element may be used to provide a custom environment to the object
factory.

Management clients, such as the WildFly CLI, may be used to configure object factory bindings. An
example to add and remove the one in the XML example above:

/subsystem=naming/binding=java\:global\/foo\/bar\/factory:add(binding-type=object-
factory, module=org.foo.bar, class=org.foo.bar.ObjectFactory, environment=[p1=v1, p2
=v2])
/subsystem=naming/binding=java\:global\/foo\/bar\/factory:remove

External Context Federation

Federation of external JNDI contexts, such as a LDAP context, are achieved by adding External
Context bindings to the global bindings configuration, through the external-context XML element.
An example of its XML configuration:

<external-context name="java:global/federation/ldap/example" class=
"javax.naming.directory.InitialDirContext" cache="true">
 <environment>
 <property name="java.naming.factory.initial" value=
"com.sun.jndi.ldap.LdapCtxFactory" />
 <property name="java.naming.provider.url" value="ldap://ldap.example.com:389"
/>
 <property name="java.naming.security.authentication" value="simple" />
 <property name="java.naming.security.principal" value="uid=admin,ou=system" />
 <property name="java.naming.security.credentials" value="secret" />
 </environment>
</external-context>

The name attribute is mandatory and specifies the target JNDI name for the entry.

114

The class attribute is mandatory and indicates the Java initial naming context type used to create
the federated context. Note that such type must have a constructor with a single environment map
argument.

The optional module attribute specifies the JBoss Module ID where any classes required by the
external JNDI context may be loaded from.

The optional cache attribute, which value defaults to false, indicates if the external context instance
should be cached.

The optional environment child element may be used to provide the custom environment needed to
lookup the external context.

Management clients, such as the WildFly CLI, may be used to configure external context bindings.
An example to add and remove the one in the XML example above:

/subsystem=naming/binding=java\:global\/federation\/ldap\/example:add(binding-type
=external-context, cache=true, class=javax.naming.directory.InitialDirContext,
environment=[java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory, java.
naming.provider.url=ldap\:\/\/ldap.example.com\:389,
java.naming.security.authentication=simple, java.naming.security.principal=uid\=
admin\,ou\=system, java.naming.security.credentials= secret])

/subsystem=naming/binding=java\:global\/federation\/ldap\/example:remove

Some JNDI providers may fail when their resources are looked up if they do not implement
properly the lookup(Name) method. Their errors would look like:

11:31:49,047 ERROR org.jboss.resource.adapter.jms.inflow.JmsActivation (default-threads -1)
javax.naming.InvalidNameException: Only support CompoundName namesat
com.tibco.tibjms.naming.TibjmsContext.lookup(TibjmsContext.java:504)at
javax.naming.InitialContext.lookup(InitialContext.java:421)

To work around their shortcomings, the org.jboss.as.naming.lookup.by.string property can be
specified in the external-context’s environment to use instead the lookup(String) method (with a
performance degradation):

<property name="org.jboss.as.naming.lookup.by.string" value="true"/>

Binding Aliases

The Naming subsystem configuration allows the binding of existent entries into additional names,
i.e. aliases. Binding aliases are specified through the lookup XML element. An example of its XML
configuration:

<lookup name="java:global/c" lookup="java:global/b" />

115

The name attribute is mandatory and specifies the target JNDI name for the entry.

The lookup attribute is mandatory and indicates the source JNDI name. It can chain lookups on
external contexts. For example, having an external context bounded to
java:global/federation/ldap/example, searching can be done there by setting lookup attribute to
java:global/federation/ldap/example/subfolder.

Management clients, such as the WildFly CLI, may be used to configure binding aliases. An example
to add and remove the one in the XML example above:

/subsystem=naming/binding=java\:global\/c:add(binding-type=lookup, lookup=java\
:global\/b)
/subsystem=naming/binding=java\:global\/c:remove

9.2.2. Remote JNDI Configuration

The Naming subsystem configuration may be used to (de)activate the remote JNDI interface, which
allows clients to lookup entries present in a remote WildFly instance.

Only entries within the java:jboss/exported context are accessible over remote
JNDI.

In the subsystem’s XML configuration, remote JNDI access bindings are configured through the
<remote-naming /> XML element:

<remote-naming />

Management clients, such as the WildFly CLI, may be used to add/remove the remote JNDI
interface. An example to add and remove the one in the XML example above:

/subsystem=naming/service=remote-naming:add
/subsystem=naming/service=remote-naming:remove

9.3. DataSource configuration
Datasources are configured through the datasource subsystem. Declaring a new datasource consists
of two separate steps: You would need to provide a JDBC driver and define a datasource that
references the driver you installed.

9.3.1. JDBC Driver Installation

The recommended way to install a JDBC driver into WildFly 11 is to deploy it as a regular JAR
deployment. The reason for this is that when you run WildFly in domain mode, deployments are
automatically propagated to all servers to which the deployment applies; thus distribution of the
driver JAR is one less thing for you to worry about!

116

Any JDBC 4-compliant driver will automatically be recognized and installed into the system by
name and version. A JDBC JAR is identified using the Java service provider mechanism. Such JARs
will contain a text a file named META-INF/services/java.sql.Driver, which contains the name of the
class(es) of the Drivers which exist in that JAR. If your JDBC driver JAR is not JDBC 4-compliant, it
can be made deployable in one of a few ways.

Modify the JAR

The most straightforward solution is to simply modify the JAR and add the missing file. You can do
this from your command shell by:

1. Change to, or create, an empty temporary directory.

2. Create a META-INF subdirectory.

3. Create a META-INF/services subdirectory.

4. Create a META-INF/services/java.sql.Driver file which contains one line - the fully-qualified
class name of the JDBC driver.

5. Use the jar command-line tool to update the JAR like this:

jar \-uf jdbc-driver.jar META-INF/services/java.sql.Driver

For a detailed explanation how to deploy JDBC 4 compliant driver jar, please refer to the chapter "
Application Deployment".

9.3.2. Datasource Definitions

The datasource itself is defined within the subsystem datasources:

117

#application-deployment

<subsystem xmlns="urn:jboss:domain:datasources:4.0">
 <datasources>
 <datasource jndi-name="java:jboss/datasources/ExampleDS" pool-name="ExampleDS
">
 <connection-url>jdbc:h2:mem:test;DB_CLOSE_DELAY=-1</connection-url>
 <driver>h2</driver>
 <pool>
 <min-pool-size>10</min-pool-size>
 <max-pool-size>20</max-pool-size>
 <prefill>true</prefill>
 </pool>
 <security>
 <user-name>sa</user-name>
 <password>sa</password>
 </security>
 </datasource>
 <xa-datasource jndi-name="java:jboss/datasources/ExampleXADS" pool-name=
"ExampleXADS">
 <driver>h2</driver>
 <xa-datasource-property name="URL">jdbc:h2:mem:test</xa-datasource-
property>
 <xa-pool>
 <min-pool-size>10</min-pool-size>
 <max-pool-size>20</max-pool-size>
 <prefill>true</prefill>
 </xa-pool>
 <security>
 <user-name>sa</user-name>
 <password>sa</password>
 </security>
 </xa-datasource>
 <drivers>
 <driver name="h2" module="com.h2database.h2">
 <xa-datasource-class>org.h2.jdbcx.JdbcDataSource</xa-datasource-class>
 </driver>
 </drivers>
 </datasources>

</subsystem>

(See standalone/configuration/standalone.xml)

As you can see the datasource references a driver by it’s logical name.

You can easily query the same information through the CLI:

118

[standalone@localhost:9990 /] /subsystem=datasources:read-resource(recursive=true)
{
 "outcome" => "success",
 "result" => {
 "data-source" => {"H2DS" => {
 "connection-url" => "jdbc:h2:mem:test;DB_CLOSE_DELAY=-1",
 "jndi-name" => "java:/H2DS",
 "driver-name" => "h2",
 "pool-name" => "H2DS",
 "use-java-context" => true,
 "enabled" => true,
 "jta" => true,
 "pool-prefill" => true,
 "pool-use-strict-min" => false,
 "user-name" => "sa",
 "password" => "sa",
 "flush-strategy" => "FailingConnectionOnly",
 "background-validation" => false,
 "use-fast-fail" => false,
 "validate-on-match" => false,
 "use-ccm" => true
 }},
 "xa-data-source" => undefined,
 "jdbc-driver" => {"h2" => {
 "driver-name" => "h2",
 "driver-module-name" => "com.h2database.h2",
 "driver-xa-datasource-class-name" => "org.h2.jdbcx.JdbcDataSource"
 }}
 }
}

[standalone@localhost:9990 /] /subsystem=datasources:installed-drivers-list
{
 "outcome" => "success",
 "result" => [{
 "driver-name" => "h2",
 "deployment-name" => undefined,
 "driver-module-name" => "com.h2database.h2",
 "module-slot" => "main",
 "driver-xa-datasource-class-name" => "org.h2.jdbcx.JdbcDataSource",
 "driver-class-name" => "org.h2.Driver",
 "driver-major-version" => 1,
 "driver-minor-version" => 3,
 "jdbc-compliant" => true
 }]
}

119

Using the web console or the CLI greatly simplifies the deployment of JDBC drivers
and the creation of datasources.

The CLI offers a set of commands to create and modify datasources:

[standalone@localhost:9990 /] data-source --help

SYNOPSIS
 data-source --help [--properties | --commands] |
 (--name=<resource_id> (--<property>=<value>)*) |
 (<command> --name=<resource_id> (--<parameter>=<value>)*)
 [--headers={<operation_header> (;<operation_header>)*}]
DESCRIPTION
 The command is used to manage resources of type /subsystem=datasources/data-source.
[...]

[standalone@localhost:9990 /] xa-data-source --help

SYNOPSIS
 xa-data-source --help [--properties | --commands] |
 (--name=<resource_id> (--<property>=<value>)*) |
 (<command> --name=<resource_id> (--<parameter>=<value>)*)
 [--headers={<operation_header> (;<operation_header>)*}]

DESCRIPTION
 The command is used to manage resources of type /subsystem=datasources/xa-data-
source.

RESOURCE DESCRIPTION
 A JDBC XA data-source configuration

[...]

9.3.3. Using security domains

Information can be found at https://community.jboss.org/wiki/JBossAS7SecurityDomainModel

9.3.4. Component Reference

The datasource subsystem is provided by the IronJacamar project. For a detailed description of the
available configuration properties, please consult the project documentation.

120

https://community.jboss.org/wiki/JBossAS7SecurityDomainModel
http://www.jboss.org/ironjacamar

• IronJacamar homepage: http://ironjacamar.org/

• Project Documentation: http://ironjacamar.org/documentation.html

• Schema description: http://www.ironjacamar.org/doc/userguide/1.1/en-US/html_single/
index.html#deployingds_descriptor

9.4. Logging Configuration

9.4.1. Overview

The overall server logging configuration is represented by the logging subsystem. It consists of four
notable parts: handler configurations, logger, the root logger declarations (aka log categories) and
logging profiles. Each logger does reference a handler (or set of handlers). Each handler declares
the log format and output:

121

http://ironjacamar.org/
http://ironjacamar.org/documentation.html
http://www.ironjacamar.org/doc/userguide/1.1/en-US/html_single/index.html#deployingds_descriptor
http://www.ironjacamar.org/doc/userguide/1.1/en-US/html_single/index.html#deployingds_descriptor

<subsystem xmlns="urn:jboss:domain:logging:3.0">
 <console-handler name="CONSOLE" autoflush="true">
 <level name="DEBUG"/>
 <formatter>
 <named-formatter name="COLOR-PATTERN"/>
 </formatter>
 </console-handler>
 <periodic-rotating-file-handler name="FILE" autoflush="true">
 <formatter>
 <named-formatter name="PATTERN"/>
 </formatter>
 <file relative-to="jboss.server.log.dir" path="server.log"/>
 <suffix value=".yyyy-MM-dd"/>
 </periodic-rotating-file-handler>
 <logger category="com.arjuna">
 <level name="WARN"/>
 </logger>
 [...]
 <root-logger>
 <level name="DEBUG"/>
 <handlers>
 <handler name="CONSOLE"/>
 <handler name="FILE"/>
 </handlers>
 </root-logger>
 <formatter name="PATTERN">
 <pattern-formatter pattern="%d{yyyy-MM-dd HH:mm:ss,SSS} %-5p [%c] (%t) %s%e%n
"/>
 </formatter>
 <formatter name="COLOR-PATTERN">
 <pattern-formatter pattern="%K{level}%d{HH:mm:ss,SSS} %-5p [%c] (%t) %s%e%n"/>
 </formatter>
</subsystem>

9.4.2. Attributes

The root resource contains two notable attributes add-logging-api-dependencies and use-

deployment-logging-config.

add-logging-api-dependencies

The add-logging-api-dependencies controls whether or not the container adds implicit logging API
dependencies to your deployments. If set to true, the default, all the implicit logging API
dependencies are added. If set to false the dependencies are not added to your deployments.

use-deployment-logging-config

The use-deployment-logging-config controls whether or not your deployment is scanned for per-
deployment logging. If set to true, the default, per-deployment logging is enabled. Set to false to

122

Implicit_module_dependencies_for_deployments.html#src-557203_safe-id-SW1wbGljaXRtb2R1bGVkZXBlbmRlbmNpZXNmb3JkZXBsb3ltZW50cy1JbXBsaWNpdG1vZHVsZWRlcGVuZGVuY2llc2ZvcmRlcGxveW1lbnRzLVdoaWNoYXJldGhlaW1wbGljaXRtb2R1bGVkZXBlbmRlbmNpZXMlM0Y
#src-557095_LoggingConfiguration-Per-deploymentLogging
#src-557095_LoggingConfiguration-Per-deploymentLogging
#src-557095_LoggingConfiguration-Per-deploymentLogging

disable this feature.

9.4.3. Per-deployment Logging

Per-deployment logging allows you to add a logging configuration file to your deployment and have
the logging for that deployment configured according to the configuration file. In an EAR the
configuration should be in the META-INF directory. In a WAR or JAR deployment the configuration
file can be in either the META-INF or WEB-INF/classes directories.

The following configuration files are allowed:

• logging.properties

• jboss-logging.properties

• log4j.properties

• log4j.xml

• jboss-log4j.xml

You can also disable this functionality by changing the use-deployment-logging-config attribute to
false.

9.4.4. Logging Profiles

Logging profiles are like additional logging subsystems. Each logging profile constists of three of the
four notable parts listed above: handler configurations, logger and the root logger declarations.

You can assign a logging profile to a deployment via the deployments manifest. Add a Logging-
Profile entry to the MANIFEST.MF file with a value of the logging profile id. For example a logging
profile defined on /subsystem=logging/logging-profile=ejbs the MANIFEST.MF would look like:

Manifest-Version: 1.0
Logging-Profile: ejbs

A logging profile can be assigned to any number of deployments. Using a logging profile also allows
for runtime changes to the configuration. This is an advantage over the per-deployment logging
configuration as the redeploy is not required for logging changes to take affect.

9.4.5. Default Log File Locations

Managed Domain

In a managed domain two types of log files do exist: Controller and server logs. The controller
components govern the domain as whole. It’s their responsibility to start/stop server instances and
execute managed operations throughout the domain. Server logs contain the logging information
for a particular server instance. They are co-located with the host the server is running on.

For the sake of simplicity we look at the default setup for managed domain. In this case, both the
domain controller components and the servers are located on the same host:

123

Process Log File

Host Controller ./domain/log/host-controller.log

Process Controller ./domain/log/process-controller.log

"Server One" ./domain/servers/server-one/log/server.log

"Server Two" ./domain/servers/server-two/log/server.log

"Server Three" ./domain/servers/server-three/log/server.log

Standalone Server

The default log files for a standalone server can be found in the log subdirectory of the distribution:

Process Log File

Server ./standalone/log/server.log

9.4.6. Filter Expressions

Filter Type Expression Description Parameter(s) Examples

accept accept Accepts all log
messages.

None accept

deny deny enies all log
messages.

None deny

not not(filterExpressio
n)

Accepts a filter as
an argument and
inverts the
returned value.

The expression
takes a single filter
for it’s argument.

not(match("JBAS"))

all all(filterExpressio
ns)

A filter consisting
of several filters in
a chain. If any
filter find the log
message to be
unloggable, the
message will not
be logged and
subsequent filters
will not be
checked.

The expression
takes a comma
delimited list of
filters for it’s
argument.

all(match("JBAS"),
match("WELD"))

any any(filterExpressi
ons)

A filter consisting
of several filters in
a chain. If any
filter fins the log
message to be
loggable, the
message will be
logged and the
subsequent filters
will not be
checked.

The expression
takes a comma
delimited list of
filters for it’s
argument.

any(match("JBAS")
, match("WELD"))

124

Filter Type Expression Description Parameter(s) Examples

levelChange levelChange(level) A filter which
modifies the log
record with a new
level.

The expression
takes a single
string based level
for it’s argument.

levelChange(WAR
N)

levels levels(levels) A filter which
includes log
messages with a
level that is listed
in the list of levels.

The expression
takes a comma
delimited list of
string based levels
for it’s argument.

levels(DEBUG,
INFO, WARN,
ERROR)

levelRange levelRange([minLe
vel,maxLevel])

A filter which logs
records that are
within the level
range.

The filter
expression uses a
"[" to indicate a
minimum
inclusive level and
a "]" to indicate a
maximum
inclusive level.
Otherwise use "("
or ")" respectively
indicate exclusive.
The first argument
for the expression
is the minimum
level allowed, the
second argument
is the maximum
level allowed.

minimum level
must be less than
ERROR and the
maximum level
must be greater
than
DEBUGlevelRange(
ERROR, DEBUG)
minimum level
must be less than
or equal to ERROR
and the maximum
level must be
greater than
DEBUGlevelRange[
ERROR, DEBUG)
minimum level
must be less than
or equal to ERROR
and the maximum
level must be
greater or equal to
INFOlevelRange[E
RROR, INFO]

match match("pattern") A regular-
expression based
filter. The raw
unformatted
message is used
against the
pattern.

The expression
takes a regular
expression for it’s
argument.
match("JBAS\d+")

substitute substitute("pattern
", "replacement
value")

A filter which
replaces the first
match to the
pattern with the
replacement
value.

The first argument
for the expression
is the pattern the
second argument
is the replacement
text.

substitute("JBAS",
"EAP")

125

Filter Type Expression Description Parameter(s) Examples

substituteAll substituteAll("patt
ern", "replacement
value")

A filter which
replaces all
matches of the
pattern with the
replacement
value.

The first argument
for the expression
is the pattern the
second argument
is the replacement
text.

substituteAll("JBA
S", "EAP")

9.4.7. List Log Files and Reading Log Files

Log files can be listed and viewed via management operations. The log files allowed to be viewed
are intentionally limited to files that exist in the jboss.server.log.dir and are associated with a
known file handler. Known file handler types include file-handler, periodic-rotating-file-handler
and size-rotating-file-handler. The operations are valid in both standalone and domain modes.

List Log Files

The logging subsystem has a log-file resource off the subsystem root resource and off each
logging-profile resource to list each log file.

CLI command and output

[standalone@localhost:9990 /] /subsystem=logging:read-children-names(child-type=log-
file)
{
 "outcome" => "success",
 "result" => [
 "server.log",
 "server.log.2014-02-12",
 "server.log.2014-02-13"
]
}

Read Log File

The read-log-file operation is available on each log-file resource. This operation has 4 optional
parameters.

Name Description

encoding the encoding the file should be read in

lines the number of lines from the file. A value of -1
indicates all lines should be read.

skip the number of lines to skip before reading.

tail true to read from the end of the file up or false
to read top down.

126

CLI command and output

[standalone@localhost:9990 /] /subsystem=logging/log-file=server.log:read-log-file
{
 "outcome" => "success",
 "result" => [
 "2014-02-14 14:16:48,781 INFO [org.jboss.as.server.deployment.scanner] (MSC
service thread 1-11) JBAS015012: Started FileSystemDeploymentService for directory
/home/jperkins/servers/wildfly-8.0.0.Final/standalone/deployments",
 "2014-02-14 14:16:48,782 INFO [org.jboss.as.connector.subsystems.datasources]
(MSC service thread 1-8) JBAS010400: Bound data source [java:jboss/myDs]",
 "2014-02-14 14:16:48,782 INFO [org.jboss.as.connector.subsystems.datasources]
(MSC service thread 1-15) JBAS010400: Bound data source
[java:jboss/datasources/ExampleDS]",
 "2014-02-14 14:16:48,786 INFO [org.jboss.as.server.deployment] (MSC service
thread 1-9) JBAS015876: Starting deployment of \"simple-servlet.war\" (runtime-name:
\"simple-servlet.war\")",
 "2014-02-14 14:16:48,978 INFO [org.jboss.ws.common.management] (MSC service
thread 1-10) JBWS022052: Starting JBoss Web Services - Stack CXF Server 4.2.3.Final",
 "2014-02-14 14:16:49,160 INFO [org.wildfly.extension.undertow] (MSC service
thread 1-16) JBAS017534: Registered web context: /simple-servlet",
 "2014-02-14 14:16:49,189 INFO [org.jboss.as.server] (Controller Boot Thread)
JBAS018559: Deployed \"simple-servlet.war\" (runtime-name : \"simple-servlet.war\")",
 "2014-02-14 14:16:49,224 INFO [org.jboss.as] (Controller Boot Thread)
JBAS015961: Http management interface listening on http://127.0.0.1:9990/management",
 "2014-02-14 14:16:49,224 INFO [org.jboss.as] (Controller Boot Thread)
JBAS015951: Admin console listening on http://127.0.0.1:9990",
 "2014-02-14 14:16:49,225 INFO [org.jboss.as] (Controller Boot Thread)
JBAS015874: WildFly {wildflyVersion}.0.0.Final \"WildFly\" started in 1906ms - Started
258 of 312 services (90 services are lazy, passive or on-demand)"
]
}

9.4.8. FAQ

Why is there a logging.properties file?

You may have noticed that there is a logging.properties file in the configuration directory. This is
logging configuration is used when the server boots up until the logging subsystem kicks in. If the
logging subsystem is not included in your configuration, then this would act as the logging
configuration for the entire server.

The logging.properties file is overwritten at boot and with each change to the
logging subsystem. Any changes made to the file are not persisted. Any changes
made to the XML configuration or via management operations will be persisted to
the logging.properties file and used on the next boot.

127

9.4.9. Handlers

WIP

 This is still a work in progress. Please feel free to edit any mistakes you find

Overview

Handlers are used to determine what happens with a log message if the logger determines the
message is loggable.

There are 6 main handlers provided with WildFly and 1 generic handler;

• async-handler

• console-handler

• file-handler

• periodic-rotating-file-handler

• size-rotating-file-handler

• syslog-handler

• custom-handler

async-handler

An async-handler is a handler that asynchronously writes log messages to it’s child handlers. This
type of handler is generally used for other handlers that take a substantial time to write logged
messages.

Attributes

• #enabled

• #filter-spec

• #level

• #overflow-action

• #queue-length

• #subhandlers

console-handler

A console-handler is a handler that writes log messages to the console. Generally this writes to
stdout, but can be set to write to stderr.

Attributes

• #autoflush

• #enabled

128

Loggers.html#src-557085_Loggers-Logger
#Handlers-async-handler
#Handlers-console-handler
#Handlers-file-handler
#Handlers-periodic-rotating-file-handler
#Handlers-size-rotating-file-handler
#Handlers-syslog-handler
#Handlers-custom-handler
#src-557084_Handlers-enabled
#src-557084_Handlers-filter-spec
#src-557084_Handlers-level
#src-557084_Handlers-overflow-action
#src-557084_Handlers-queue-length
#src-557084_Handlers-subhandlers
#src-557084_Handlers-autoflush
#src-557084_Handlers-enabled

• #encoding

• #filter-spec

• #formatter

• #level

• #named-formatter

• #target

file-handler

A file-handler is a handler that writes log messages to the specified file.

Attributes

• #autoflush

• #enabled

• #encoding

• #filter-spec

• #formatter

• #level

• #named-formatter

• #file

periodic-rotating-file-handler

A periodic-rotating-file-handler is a handler that writes log messages to the specified file. The file
rotates on the date pattern specified in the #suffix attribute. The suffix must be a valid pattern
recognized by the java.text.SimpleDateFormat and must not rotate on seconds or milliseconds.

 The rotate happens before the next message is written by the handler.

Attributes

• #autoflush

• #enabled

• #encoding

• #filter-spec

• #formatter

• #level

• #named-formatter

• #file

• #suffix

129

#src-557084_Handlers-encoding
#src-557084_Handlers-filter-spec
#src-557084_Handlers-formatter
#src-557084_Handlers-level
#src-557084_Handlers-named-formatter
#src-557084_Handlers-target
#src-557084_Handlers-autoflush
#src-557084_Handlers-enabled
#src-557084_Handlers-encoding
#src-557084_Handlers-filter-spec
#src-557084_Handlers-formatter
#src-557084_Handlers-level
#src-557084_Handlers-named-formatter
#src-557084_Handlers-file
#src-557084_Handlers-suffix
http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html
#src-557084_Handlers-autoflush
#src-557084_Handlers-enabled
#src-557084_Handlers-encoding
#src-557084_Handlers-filter-spec
#src-557084_Handlers-formatter
#src-557084_Handlers-level
#src-557084_Handlers-named-formatter
#src-557084_Handlers-file
#src-557084_Handlers-suffix

size-rotating-file-handler

A size-rotating-file-handler is a handler that writes log messages to the specified file. The file
rotates when the file size is greater than the #rotate-size attribute. The rotated file will be kept and
the index appended to the name moving previously rotated file indexes up by 1 until the #max-
backup-index is reached. Once the #max-backup-index is reached, the indexed files will be
overwritten.

 The rotate happens before the next message is written by the handler.

Attributes

• #autoflush

• #enabled

• #encoding

• #filter-spec

• #formatter

• #level

• #named-formatter

• #file

• #max-backup-index

• #rotate-size

• #rotate-on-boot

syslog-handler

A syslog-handler is a handler that writes to a syslog server. The handler support RFC3164 or
RFC5424 formats.

Attributes

• #port

• #app-name

• #enabled

• #level

• #facility

• #server-address

• #hostname

• #syslog-format

130

#src-557084_Handlers-rotate-size
#src-557084_Handlers-max-backup-index
#src-557084_Handlers-max-backup-index
#src-557084_Handlers-max-backup-index
#src-557084_Handlers-autoflush
#src-557084_Handlers-enabled
#src-557084_Handlers-encoding
#src-557084_Handlers-filter-spec
#src-557084_Handlers-formatter
#src-557084_Handlers-level
#src-557084_Handlers-named-formatter
#src-557084_Handlers-file
#src-557084_Handlers-max-backup-index
#src-557084_Handlers-rotate-size
#src-557084_Handlers-rotate-on-boot
http://www.ietf.org/rfc/rfc3164.txt
http://www.ietf.org/rfc/rfc5424.txt
#src-557084_Handlers-port
#src-557084_Handlers-app-name
#src-557084_Handlers-enabled
#src-557084_Handlers-level
#src-557084_Handlers-facility
#src-557084_Handlers-server-address
#src-557084_Handlers-hostname
#src-557084_Handlers-syslog-format

The syslog-handler is missing some configuration properties that may be useful in
some scenarios like setting a formatter. Use the
org.jboss.logmanager.handlers.SyslogHandler in module org.jboss.logmanager as a
#custom-handler to exploit these benefits. Additional attributes will be added at
some point so this will no longer be necessary.

custom-handler

Attributes

autoflush

Description: Indicates whether a flush should happen
after each write.

Type: boolean

Default Value: true

Allowed Values: true or false

enabled

Description: If set to true the handler is enabled and
functioning as normal, if set to false the
handler is ignored when processing log
messages.

Type: boolean

Default Value: true

Allowed Values: true or false

encoding

Description: The character encoding used by this
Handler.

Type: string

Default Value: null

Allowed Values: Any valid encoding

file

131

#src-557084_Handlers-custom-handler

Description: An object describing the file the handler
should write to.

Type: object

Default Value: null

Allowed Values: An object optionally containing a relative-to
property and a path. The path is a required
property of the object.

named-formatter

Description: The name of a defined formatter to be
used on the handler.

Type: string

Default Value: null

Allowed Values: TODO add link

formatter

Description: Defines a pattern for a pattern formatter.

Type: string

Default Value: %d\{HH:mm:ss,SSS} %-5p [%c] (%t) %s%E%n

Allowed Values: TODO add link

filter-spec

Description: A filter expression value to define a filter.

Type: string

Default Value: null

Allowed Values: See Filter Expression

level

132

Description : The log level specifying which message
levels will be logged by this logger.
Message levels lower than this value will
be discarded.

Type: string

Default Value: ALL

Allowed Values: ALL FINEST FINER TRACE DEBUG FINE
CONFIG INFO WARN WARNING ERROR
SEVERE FATAL OFF

max-backup-index

Description: The maximum number of rotated files to
keep.

Type: integer

Default Value: 1

Allowed Values: any integer greater than 0

overflow-action

Description: Specify what action to take when the
overflowing.

Type: string

Default Value: BLOCK

Allowed Values: BLOCK or DISCARD

queue-length

Description: The queue length to use before flushing
writing

Type: integer

Default Value: 0

Allowed Values: any positive integer

rotate-on-boot

133

Description: Indicates whether or not the file should be
rotated each time the #file attribute is
changed. If set to true will rotate on each
boot of the server.

Type: boolean

Default Value: false

Allowed Values: true or false

rotate-size

Description: The size at which the file should be
rotated.

Type: string

Default Value: 2m

Allowed Values: Any positive integer with a size type
appended to the end. Valid types are b for
bytes, k for kilobytes, m for megabytes, g for
gigabytes or t for terabytes. Type character is
not case sensitive.

subhandlers

Description: The handlers to associate with the async
handler

Type: list of strings

Default Value: null

Allowed Values: An array of valid handler names

suffix

Description: The pattern used to determine when the
file should be rotated.

Type: string

Default Value: null

Allowed Values: Any valid java.text.SimpleDateFormat
pattern.

134

target

Description: Defines the target of the console handler.

Type: string

Default Value: System.out

Allowed Values: System.out or System.err

9.4.10. How To

How do I add a log category?

/subsystem=logging/logger=com.your.category:add

How do I change a log level?

To change a handlers log level:

/subsystem=logging/console-handler=CONSOLE:write-attribute(name=level,value=DEBUG)

Changing the level on a log category is the same:

/subsystem=logging/logger=com.your.category:write-attribute(name=level,value=ALL)

How do I log my applications messages to their own file?

1. Create a file handler. There are 3 different types of file handlers to choose from; file-handler,
periodic-rotating-file-handler and size-rotating-file-handler. In this example we’ll just use a
simple file-handler.

/subsystem=logging/file-handler=fh:add(level=INFO, file={"relative-to"=>
"jboss.server.log.dir", "path"=>"fh.log"}, append=false, autoflush=true)

2. Now create the log category.

/subsystem=logging/logger=org.your.company:add(use-parent-handlers=false,handlers=
["fh"])

How do I use log4j.properties or log4j.xml instead of using the

logging subsystem configuration?

135

First note that if you choose to use a log4j configuration file, you will no longer be able to make
runtime logging changes to your deployments logging configuration.

If that is acceptable you can use per-deployment logging and just include a configuration file in
your deployment.

How do I use my own version of log4j?

If you need/want to include your version of log4j then you need to do the following two steps.

1. Disable the adding of the logging dependencies to all your deployments with the add-logging-
api-dependencies attribute and disable the use-deployment-logging-config attribute OR exclude
the logging subsystem in a jboss-deployment-structure.xml.

2. Then need to include a log4j library in your deployment.

This only works for logging in your deployment. Server logs will continue to use the logging
subsystem configuration.

9.4.11. Loggers

WIP

 This is still a work in progress. Please feel free to edit any mistakes you find

Overview

Loggers are used to log messages. A logger is defined by a category generally consisting of a
package name or a class name.

A logger is the first step to determining if a messages should be logged or not. If a logger is defined
with a level, the level of the message must be greater than the level defined on the logger. The filter
is then checked next and the rules of the filter will determine whether or not the messages is said to
be loggable.

Logger Resource

A logger resource uses the path subsystem=logging/logger=$category where $category is the of the
logger. For example to a logger named org.wildfly.example would have a resource path of
subsystem=logging/logger=org.wildfly.example.

A logger as 4 writeable attributes;

• filter-spec

• #handlers

• #level

• use-parent-handlers

136

Logging_Configuration.html#src-557095_LoggingConfiguration-Per-deploymentLogging
Logging_Configuration.html#src-557095_LoggingConfiguration-add-logging-api-dependencies
Logging_Configuration.html#src-557095_LoggingConfiguration-add-logging-api-dependencies
Logging_Configuration.html#src-557095_LoggingConfiguration-use-deployment-logging-config
Class_Loading_in_WildFly.html#src-557206_ClassLoadinginWildFly-JBossDeploymentStructureFile
#Loggers-filter-spec
#Loggers-handlers
#Loggers-level
#Loggers-use-parent-handlers

You may notice that the category and filter attributes are missing. While filter is
writable it may be deprecated and removed in the future. Both attributes are still
on the resource for legacy reasons.

filter-spec

The filter-spec attribute is an expression based string to define filters for the logger.

 Filters on loggers are not inherited.

handlers

The handlers attribute is a list of handler names that should be attached to the logger. If the use-
parent-handlers attribute is set to true and the log messages is determined to be loggable, parent
loggers will continue to be processed.

level

The level attribute allows the minimum level to allow messages to be logged at for the logger.

use-parent-handlers

The use-parent-handlers attribute is a boolean attribute to determine whether or not parent loggers
should also process the log message.

Root Logger Resource

The root-logger is similar to a #Logger Resource only it has no category and it’s name is must be
ROOT.

Logger Hierarchy

A logger hierarchy is defined by it’s category. The category is a . (dot) delimited string generally
consisting of the package name or a class name. For example the logger org.wildfly is the parent
logger of org.wildfly.example.

9.5. EJB3 subsystem configuration guide
This page lists the options that are available for configuring the EJB subsystem.

A complete example of the config is shown below, with a full explanation of each

<subsystem xmlns="urn:jboss:domain:ejb3:1.2">
 <session-bean>
 <stateless>
 <bean-instance-pool-ref pool-name="slsb-strict-max-pool"/>
 </stateless>
 <stateful default-access-timeout="5000" cache-ref="simple" clustered-cache-ref=
"clustered"/>

137

#src-557085_Loggers-use-parent-handlers
#src-557085_Loggers-use-parent-handlers
#src-557085_Loggers-LoggerResource

 <singleton default-access-timeout="5000"/>
 </session-bean>
 <mdb>
 <resource-adapter-ref resource-adapter-name="hornetq-ra"/>
 <bean-instance-pool-ref pool-name="mdb-strict-max-pool"/>
 </mdb>
 <entity-bean>
 <bean-instance-pool-ref pool-name="entity-strict-max-pool"/>
 </entity-bean>
 <pools>
 <bean-instance-pools>
 <strict-max-pool name="slsb-strict-max-pool" max-pool-size="20" instance-
acquisition-timeout="5" instance-acquisition-timeout-unit="MINUTES"/>
 <strict-max-pool name="mdb-strict-max-pool" max-pool-size="20" instance-
acquisition-timeout="5" instance-acquisition-timeout-unit="MINUTES"/>
 <strict-max-pool name="entity-strict-max-pool" max-pool-size="100" instance-
acquisition-timeout="5" instance-acquisition-timeout-unit="MINUTES"/>
 </bean-instance-pools>
 </pools>
 <caches>
 <cache name="simple" aliases="NoPassivationCache"/>
 <cache name="passivating" passivation-store-ref="file" aliases=
"SimpleStatefulCache"/>
 <cache name="clustered" passivation-store-ref="infinispan" aliases=
"StatefulTreeCache"/>
 </caches>
 <passivation-stores>
 <file-passivation-store name="file"/>
 <cluster-passivation-store name="infinispan" cache-container="ejb"/>
 </passivation-stores>
 <async thread-pool-name="default"/>
 <timer-service thread-pool-name="default">
 <data-store path="timer-service-data" relative-to="jboss.server.data.dir"/>
 </timer-service>
 <remote connector-ref="remoting-connector" thread-pool-name="default"/>
 <thread-pools>
 <thread-pool name="default">
 <max-threads count="10"/>
 <keepalive-time time="100" unit="milliseconds"/>
 </thread-pool>
 </thread-pools>
 <iiop enable-by-default="false" use-qualified-name="false"/>
 <in-vm-remote-interface-invocation pass-by-value="false"/> <!-- Warning see notes
below about possible issues -->
</subsystem>

9.5.1. <session-bean>

138

<stateless>

This element is used to configure the instance pool that is used by default for stateless session
beans. If it is not present stateless session beans are not pooled, but are instead created on demand
for every invocation. The instance pool can be overridden on a per deployment or per bean level
using jboss-ejb3.xml or the org.jboss.ejb3.annotation.Pool annotation. The instance pools
themselves are configured in the <pools> element.

<stateful>

This element is used to configure Stateful Session Beans.

• default-access-timeout This attribute specifies the default time concurrent invocations on the
same bean instance will wait to acquire the instance lock. It can be overridden via the
deployment descriptor or via the javax.ejb.AccessTimeout annotation.

• cache-ref This attribute is used to set the default cache for non-clustered beans. It can be
overridden by jboss-ejb3.xml, or via the org.jboss.ejb3.annotation.Cache annotation.

• clustered-cache-ref This attribute is used to set the default cache for clustered beans.

<singleton>

This element is used to configure Singleton Session Beans.

• default-access-timeout This attribute specifies the default time concurrent invocations will wait
to acquire the instance lock. It can be overridden via the deployment descriptor or via the
javax.ejb.AccessTimeout annotation.

9.5.2. <mdb>

<resource-adaptor-ref>

This element sets the default resource adaptor for Message Driven Beans.

<bean-instance-pool-ref>

This element is used to configure the instance pool that is used by default for Message Driven
Beans. If it is not present they are not pooled, but are instead created on demand for every
invocation. The instance pool can be overridden on a per deployment or per bean level using jboss-
ejb3.xml or the org.jboss.ejb3.annotation.Pool annotation. The instance pools themselves are
configured in the <pools> element.

9.5.3. <entity-bean>

This element is used to configure the behavior for EJB2 EntityBeans.

<bean-instance-pool-ref>

This element is used to configure the instance pool that is used by default for Entity Beans. If it is
not present they are not pooled, but are instead created on demand for every invocation. The

139

instance pool can be overridden on a per deployment or per bean level using jboss-ejb3.xml or the
org.jboss.ejb3.annotation.Pool annotation. The instance pools themselves are configured in the
<pools> element.

9.5.4. <pools>

9.5.5. <caches>

9.5.6. <passivation-stores>

9.5.7. <async>

This element enables async EJB invocations. It is also used to specify the thread pool that these
invocations will use.

9.5.8. <timer-service>

This element enables the EJB timer service. It is also used to specify the thread pool that these
invocations will use.

<data-store>

This is used to configure the directory that persistent timer information is saved to.

9.5.9. <remote>

This is used to enable remote EJB invocations. It specifies the remoting connector to use (as defined
in the remoting subsystem configuration), and the thread pool to use for remote invocations.

9.5.10. <thread-pools>

This is used to configure the thread pools used by async, timer and remote invocations.

9.5.11. <iiop>

This is used to enable IIOP (i.e. CORBA) invocation of EJB’s. If this element is present then the
JacORB subsystem must also be installed. It supports the following two attributes:

• enable-by-default If this is true then all EJB’s with EJB2.x home interfaces are exposed via IIOP,
otherwise they must be explicitly enabled via jboss-ejb3.xml.

• use-qualified-name If this is true then EJB’s are bound to the corba naming context with a
binding name that contains the application and modules name of the deployment (e.g.
myear/myejbjar/MyBean), if this is false the default binding name is simply the bean name.

9.5.12. <in-vm-remote-interface-invocation>

By default remote interface invocations use pass by value, as required by the EJB spec. This element
can use used to enable pass by reference, which can give you a performance boost. Note WildFly

140

will do a shallow check to see if the caller and the EJB have access to the same class definitions,
which means if you are passing something such as a List<MyObject>, WildFly only checks the List to
see if it is the same class definition on the call & EJB side. If the top level class definition is the same,
JBoss will make the call using pass by reference, which means that if MyObject or any objects
beneath it are loaded from different classloaders, you would get a ClassCastException. If the top
level class definitions are loaded from different classloaders, JBoss will use pass by value. JBoss
cannot do a deep check of all of the classes to ensure no ClassCastExceptions will occur because
doing a deep check would eliminate any performance boost you would have received by using call
by reference. It is recommended that you configure pass by reference only on callers that you are
sure will use the same class definitions and not globally. This can be done via a configuration in the
jboss-ejb-client.xml as shown below.

To configure a caller/client use pass by reference, you configure your top level deployment with a
META-INF/jboss-ejb-client.xml containing:

<jboss-ejb-client xmlns="urn:jboss:ejb-client:1.0">
 <client-context>
 <ejb-receivers local-receiver-pass-by-value="false"/>
 </client-context>
</jboss-ejb-client>

9.6. Undertow subsystem configuration

Web subsystem was replaced in WildFly 8 with Undertow.

There are two main parts to the undertow subsystem, which are server and Servlet container
configuration, as well as some ancillary items. Advanced topics like load balancing and failover are
covered on the "High Availability Guide". The default configuration does is suitable for most use
cases and provides reasonable performance settings.

Required extension:

<extension module="org.wildfly.extension.undertow" />

Basic subsystem configuration example:

141

<subsystem xmlns="urn:jboss:domain:undertow:1.0">
 <buffer-caches>
 <buffer-cache name="default" buffer-size="1024" buffers-per-region="1024"
max-regions="10"/>
 </buffer-caches>
 <server name="default-server">
 <http-listener name="default" socket-binding="http" />
 <host name="default-host" alias="localhost">
 <location name="/" handler="welcome-content" />
 </host>
 </server>
 <servlet-container name="default" default-buffer-cache="default" stack-trace-
on-error="local-only" >
 <jsp-config/>
 <persistent-sessions/>
 </servlet-container>
 <handlers>
 <file name="welcome-content" path="${jboss.home.dir}/welcome-content"
directory-listing="true"/>
 </handlers>
 </subsystem>

Dependencies on other subsystems:

IO Subsystem

9.6.1. Buffer cache configuration

The buffer cache is used for caching content, such as static files. Multiple buffer caches can be
configured, which allows for separate servers to use different sized caches.

Buffers are allocated in regions, and are of a fixed size. If you are caching many small files then
using a smaller buffer size will be better.

The total amount of space used can be calculated by multiplying the buffer size by the number of
buffers per region by the maximum number of regions.

 <buffer-caches>
 <buffer-cache name="default" buffer-size="1024" buffers-per-region="1024" max-
regions="10"/>
 </buffer-caches>

Attribute Description

buffer-size The size of the buffers. Smaller buffers allow
space to be utilised more effectively

buffers-per-region The numbers of buffers per region

142

Attribute Description

max-regions The maximum number of regions. This controls
the maximum amount of memory that can be
used for caching

9.6.2. Server configuration

A server represents an instance of Undertow. Basically this consists of a set of connectors and some
configured handlers.

<server name="default-server" default-host="default-host" servlet-container="default"
>

Attribute Description

default-host the virtual host that will be used if an incoming
request as no Host: header

servlet-container the servlet container that will be used by this
server, unless is is explicitly overriden by the
deployment

Connector configuration

Undertow provides HTTP, HTTPS and AJP connectors, which are configured per server.

Common settings

The following settings are common to all connectors:

Attribute Description

socket-binding The socket binding to use. This determines the
address and port the listener listens on.

worker A reference to an XNIO worker, as defined in the
IO subsystem. The worker that is in use controls
the IO and blocking thread pool.

buffer-pool A reference to a buffer pool as defined in the IO
subsystem. These buffers are used internally to
read and write requests. In general these should
be at least 8k, unless you are in a memory
constrained environment.

enabled If the connector is enabled.

max-post-size The maximum size of incoming post requests
that is allowed.

buffer-pipelined-data If responses to HTTP pipelined requests should
be buffered, and send out in a single write. This
can improve performance if HTTP pipe lining is
in use and responses are small.

143

Attribute Description

max-header-size The maximum size of a HTTP header block that
is allowed. Responses with to much data in their
header block will have the request terminated
and a bad request response send.

max-parameters The maximum number of query or path
parameters that are allowed. This limit exists to
prevent hash collision based DOS attacks.

max-headers The maximum number of headers that are
allowed. This limit exists to prevent hash
collision based DOS attacks.

max-cookies The maximum number of cookies that are
allowed. This limit exists to prevent hash
collision based DOS attacks.

allow-encoded-slash Set this to true if you want the server to decode
percent encoded slash characters. This is
probably a bad idea, as it can have security
implications, due to different servers
interpreting the slash differently. Only enable
this if you have a legacy application that
requires it.

decode-url If the URL should be decoded. If this is not set to
true then percent encoded characters in the URL
will be left as is.

url-charset The charset to decode the URL to.

always-set-keep-alive If the 'Connection: keep-alive' header should be
added to all responses, even if not required by
spec.

disallowed-methods A comma separated list of HTTP methods that
are not allowed. HTTP TRACE is disabled by
default.

HTTP Connector

<http-listener name="default" socket-binding="http" />

Attribute Description

certificate-forwarding If this is set to true then the HTTP listener will
read a client certificate from the
SSL_CLIENT_CERT header. This allows client cert
authentication to be used, even if the server
does not have a direct SSL connection to the end
user. This should only be enabled for servers
behind a proxy that has been configured to
always set these headers.

144

Attribute Description

redirect-socket The socket binding to redirect requests that
require security too.

proxy-address-forwarding If this is enabled then the X-Forwarded-For and
X-Forwarded-Proto headers will be used to
determine the peer address. This allows
applications that are behind a proxy to see the
real address of the client, rather than the
address of the proxy.

HTTPS listener

Https listener provides secure access to the server. The most important configuration option is
security realm which defines SSL secure context.

<https-listener name="default" socket-binding="https" security-realm="ssl-realm" />

Attribute Description

security-realm The security realm to use for the SSL
configuration. See Security realm examples for
how to configure it: Examples

verify-client One of either NOT_REQUESTED, REQUESTED or
REQUIRED. If client cert auth is in use this
should be either REQUESTED or REQUIRED.

enabled-cipher-suites A list of cypher suit names that are allowed.

AJP listener

<ajp-listener name="default" socket-binding="ajp" />

Host configuration

The host element corresponds to a virtual host.

Attribute Description

name The virtual host name

alias A whitespace separated list of additional host
names that should be matched

default-web-module The name of a deployment that should be used
to serve up requests that do not match anything.

9.6.3. Servlet container configuration

The servlet-container element corresponds to an instance of an Undertow Servlet container. Most
servers will only need a single servlet container, however there may be cases where it makes sense

145

to define multiple containers (in particular if you want applications to be isolated, so they cannot
dispatch to each other using the RequestDispatcher. You can also use multiple Servlet containers to
serve different applications from the same context path on different virtual hosts).

Attribute Description

allow-non-standard-wrappers The Servlet specification requires applications to
only wrap the request/response using wrapper
classes that extend from the
ServletRequestWrapper and
ServletResponseWrapper classes. If this is set to
true then this restriction is relaxed.

default-buffer-cache The buffer cache that is used to cache static
resources in the default Servlet.

stack-trace-on-error Can be either all, none, or local-only. When set to
none Undertow will never display stack traces.
When set to All Undertow will always display
them (not recommended for production use).
When set to local-only Undertow will only
display them for requests from local addresses,
where there are no headers to indicate that the
request has been proxied. Note that this feature
means that the Undertow error page will be
displayed instead of the default error page
specified in web.xml.

default-encoding The default encoding to use for requests and
responses.

use-listener-encoding If this is true then the default encoding will be
the same as that used by the listener that
received the request.

JSP configuration

Session Cookie Configuration

This allows you to change the attributes of the session cookie.

Attribute Description

name The cookie name

domain The cookie domain

comment The cookie comment

http-only If the cookie is HTTP only

secure If the cookie is marked secure

max-age The max age of the cookie

Persistent Session Configuration

Persistent sessions allow session data to be saved across redeploys and restarts. This feature is

146

enabled by adding the persistent-sessions element to the server config. This is mostly intended to be
a development time feature.

If the path is not specified then session data is stored in memory, and will only be persistent across
redeploys, rather than restarts.

Attribute Description

path The path to the persistent sessions data

relative-to The location that the path is relevant to

9.6.4. AJP listeners

The AJP listeners are child resources of the subsystem undertow. They are used with mod_jk,
mod_proxy and mod_cluster of the Apache httpd front-end. Each listener does reference a
particular socket binding:

[standalone@localhost:9999 /] /subsystem=undertow/server=default-server:read-children-
names(child-type=ajp-listener)
{
 "outcome" => "success",
 "result" => [
 "ajp-listener",
]
}

[standalone@localhost:9999 /] /subsystem=undertow/server=default-server/ajp-listener=
*:read-resource(recursive=true)
{
 "outcome" => "success",
 "result" => {
 "enabled" => "true",
 "scheme" => "http",
 "socket-binding" => "ajp",
 }
}

Creating a new ajp-listener requires you to declare a new socket binding first:

[standalone@localhost:9999 /] /socket-binding-group=standard-sockets/socket-binding
=ajp:add(port=8009)

The newly created, unused socket binding can then be used to create a new connector
configuration:

[standalone@localhost:9999 /] /subsystem=undertow/server=default-server/ajp-listener
=myListener:add(socket-binding=ajp, scheme=http, enabled=true)

147

9.6.5. Using Wildfly as a Load Balancer

Wildfly 10 adds support for using the Undertow subsystem as a load balancer. Wildfly supports two
different approaches, you can either define a static load balancer, and specify the back end hosts in
your configuration, or use it as a mod_cluster frontend, and use mod_cluster to dynamically update
the hosts.

General Overview

Wildly uses Undertow’s proxy capabilities to act as a load balancer. Undertow will connect to the
back end servers using its built in client, and proxies requests.

The following protocols are supported:

• http

• ajp

• http2

• h2c (clear text HTTP2)
Of these protocols h2c should give the best performance, if the back end servers support it.

The Undertow proxy uses async IO, the only threads that are involved in the request is the IO
thread that is responsible for the connection. The connection to the back end server is made from
the same thread, which removes the need for any thread safety constructs.
If both the front and back end servers support server push, and HTTP2 is in use then the proxy also
supports pushing responses to the client. In cases where proxy and backend are capable of server
push, but the client does not support it the server will send a X-Disable-Push header to let the
backend know that it should not attempt to push for this request.

Using Wildly as a static load balancer

To use WildFly as a static load balancer the first step is to create a proxy handler in the Undertow
subsystem. For the purposes of this example we are going to assume that our load balancer is going
to load balance between two servers, sv1.foo.com and sv2.foo.com, and will be using the AJP
protocol.

The first step is to add a reverse proxy handler to the Undertow subsystem:

/subsystem=undertow/configuration=handler/reverse-proxy=my-handler:add()

Then we need to define outbound socket bindings for remote hosts

/socket-binding-group=standard-sockets/remote-destination-outbound-socket-binding
=remote-host1/:add(host=sv1.foo.com, port=8009)
/socket-binding-group=standard-sockets/remote-destination-outbound-socket-binding
=remote-host2/:add(host=sv2.foo.com, port=8009)

and than we add them as hosts to reverse proxy handler

148

/subsystem=undertow/configuration=handler/reverse-proxy=my-handler/host=host1:add
(outbound-socket-binding=remote-host1, scheme=ajp, instance-id=myroute, path=/test)
/subsystem=undertow/configuration=handler/reverse-proxy=my-handler/host=host2:add
(outbound-socket-binding=remote-host2, scheme=ajp, instance-id=myroute, path=/test)

Now we need to actually add the reverse proxy to a location. I am going to assume we are serving
the path /app:

/subsystem=undertow/server=default-server/host=default-host/location=\
/app:add(handler=my-handler)

This is all there is to it. If you point your browser to http://localhost:8080/app you should be able
to see the proxied content.

The full details of all configuration options available can be found in the subsystem reference.

9.7. Messaging configuration
The JMS server configuration is done through the messaging-activemq subsystem. In this chapter
we are going outline the frequently used configuration options. For a more detailed explanation
please consult the Artemis user guide (See "Component Reference").

9.7.1. Required Extension

The configuration options discussed in this section assume that the the
org.wildfly.extension.messaging-activemq extension is present in your configuration. This
extension is not included in the standard standalone.xml and standalone-ha.xml configurations
included in the WildFly distribution. It is, however, included with the standalone-full.xml and
standalone-full-ha.xml configurations.

You can add the extension to a configuration without it either by adding an <extension

module="org.wildfly.extension.messaging-activemq"/> element to the xml or by using the following
CLI operation:

[standalone@localhost:9990 /]/extension=org.wildfly.extension.messaging-activemq:add

9.7.2. Connectors

There are three kind of connectors that can be used to connect to WildFly JMS Server

• invm-connector can be used by a local client (i.e. one running in the same JVM as the server)

• netty-connector can be used by a remote client (and uses Netty over TCP for the
communication)

• http-connector can be used by a remote client (and uses Undertow Web Server to upgrade from
a HTTP connection)

149

http://localhost:8080/app
http://localhost:8080/app
http://localhost:8080/app
https://wildscribe.github.io/WildFly/10.1/subsystem/undertow/index.html

9.7.3. JMS Connection Factories

There are three kinds of basic JMS connection-factory that depends on the type of connectors that is
used.

There is also a pooled-connection-factory which is special in that it is essentially a configuration
facade for both the inbound and outbound connectors of the the Artemis JCA Resource Adapter. An
MDB can be configured to use a pooled-connection-factory (e.g. using @ResourceAdapter). In this
context, the MDB leverages the inbound connector of the Artemis JCA RA. Other kinds of clients can
look up the pooled-connection-factory in JNDI (or inject it) and use it to send messages. In this
context, such a client would leverage the outbound connector of the Artemis JCA RA. A pooled-
connection-factory is also special because:

• It is only available to local clients, although it can be configured to point to a remote server.

• As the name suggests, it is pooled and therefore provides superior performance to the clients
which are able to use it. The pool size can be configured via the max-pool-size and min-pool-size
attributes.

• It should only be used to send (i.e. produce) messages when looked up in JNDI or injected.

• It can be configured to use specific security credentials via the user and password attributes. This
is useful if the remote server to which it is pointing is secured.

• Resources acquired from it will be automatically enlisted any on-going JTA transaction. If you
want to send a message from an EJB using CMT then this is likely the connection factory you
want to use so the send operation will be atomically committed along with the rest of the EJB’s
transaction operations.

To be clear, the inbound connector of the Artemis JCA RA (which is for consuming messages) is only
used by MDBs and other JCA-based components. It is not available to traditional clients.

Both a connection-factory and a pooled-connection-factory reference a connector declaration.

A netty-connector is associated with a socket-binding which tells the client using the connection-
factory where to connect.

• A connection-factory referencing a netty-connector is suitable to be used by a remote client to
send messages to or receive messages from the server (assuming the connection-factory has an
appropriately exported entry).

• A pooled-connection-factory looked up in JNDI or injected which is referencing a netty-
connector is suitable to be used by a local client to send messages to a remote server granted the
socket-binding references an outbound-socket-binding pointing to the remote server in question.

• A pooled-connection-factory used by an MDB which is referencing a remote-connector is suitable
to consume messages from a remote server granted the socket-binding references an outbound-
socket-binding pointing to the remote server in question.

An in-vm-connector is associated with a server-id which tells the client using the connection-factory
where to connect (since multiple Artemis servers can run in a single JVM).

• A connection-factory referencing an in-vm-connector is suitable to be used by a local client to

150

either send messages to or receive messages from a local server.

• A pooled-connection-factory looked up in JNDI or injected which is referencing an in-vm-
connector is suitable to be used by a local client only to send messages to a local server.

• A pooled-connection-factory used by an MDB which is referencing an in-vm-connector is suitable
only to consume messages from a local server.

A http-connector is associated with the socket-binding that represents the HTTP socket (by default,
named http).

• A connection-factory referencing a http-connector is suitable to be used by a remote client to
send messages to or receive messages from the server by connecting to its HTTP port before
upgrading to the messaging protocol.

• A pooled-connection-factory referencing a http-connector is suitable to be used by a local client
to send messages to a remote server granted the socket-binding references an outbound-socket-
binding pointing to the remote server in question.

• A pooled-connection-factory used by an MDB which is referencing a http-connector is suitable
only to consume messages from a remote server granted the socket-binding references an
outbound-socket-binding pointing to the remote server in question.

The entry declaration of a connection-factory or a pooled-connection-factory specifies the JNDI
name under which the factory will be exposed. Only JNDI names bound in the
"java:jboss/exported" namespace are available to remote clients. If a connection-factory has an
entry bound in the "java:jboss/exported" namespace a remote client would look-up the connection-
factory using the text after "java:jboss/exported". For example, the " RemoteConnectionFactory`" is
bound by default to `"java:jboss/exported/jms/RemoteConnectionFactory" which means a remote
client would look-up this connection-factory using " jms/RemoteConnectionFactory`". A `pooled-
connection-factory should not have any entry bound in the " java:jboss/exported`" namespace

because a `pooled-connection-factory is not suitable for remote clients.

Since JMS 2.0, a default JMS connection factory is accessible to EE application under the JNDI name
java:comp/DefaultJMSConnectionFactory. WildFly messaging subsystem defines a pooled-connection-
factory that is used to provide this default connection factory. Any parameter change on this
pooled-connection-factory will be take into account by any EE application looking the default JMS
provider under the JNDI name java:comp/DefaultJMSConnectionFactory.

151

<subsystem xmlns="urn:jboss:domain:messaging-activemq:1.0">
 <server name="default">
 [...]
 <http-connector name="http-connector"
 socket-binding="http"
 endpoint="http-acceptor" />
 <http-connector name="http-connector-throughput"
 socket-binding="http"
 endpoint="http-acceptor-throughput">
 <param name="batch-delay"
 value="50"/>
 </http-connector>
 <in-vm-connector name="in-vm"
 server-id="0"/>
 [...]
 <connection-factory name="InVmConnectionFactory"
 connectors="in-vm"
 entries="java:/ConnectionFactory" />
 <pooled-connection-factory name="activemq-ra"
 transaction="xa"
 connectors="in-vm"
 entries="java:/JmsXA
java:jboss/DefaultJMSConnectionFactory"/>
 [...]
 </server>
</subsystem>

~(See standalone/configuration/standalone-full.xml)~

9.7.4. JMS Queues and Topics

JMS queues and topics are sub resources of the messaging-actively subsystem. One can define
either a jms-queue or jms-topic. Each destination must be given a name and contain at least one entry
in its entries element (separated by whitespace).

Each entry refers to a JNDI name of the queue or topic. Keep in mind that any jms-queue or jms-
topic which needs to be accessed by a remote client needs to have an entry in the
"java:jboss/exported" namespace. As with connection factories, if a jms-queue or or jms-topic has an
entry bound in the "java:jboss/exported" namespace a remote client would look it up using the text
after "java:jboss/exported`". For example, the following `jms-queue "testQueue" is bound to
"java:jboss/exported/jms/queue/test" which means a remote client would look-up this \{{kms-queue}
using "jms/queue/test". A local client could look it up using "java:jboss/exported/jms/queue/test",
"java:jms/queue/test", or more simply "jms/queue/test":

152

<subsystem xmlns="urn:jboss:domain:messaging-activemq:1.0">
 <server name="default">
 [...]
 <jms-queue name="testQueue"
 entries="jms/queue/test java:jboss/exported/jms/queue/test" />
 <jms-topic name="testTopic"
 entries="jms/topic/test java:jboss/exported/jms/topic/test" />
</subsystem>

~(See standalone/configuration/standalone-full.xml)~

JMS endpoints can easily be created through the CLI:

[standalone@localhost:9990 /] jms-queue add --queue-address=myQueue --entries=queues
/myQueue

[standalone@localhost:9990 /] /subsystem=messaging-activemq/server=default/jms-queue
=myQueue:read-resource
{
 "outcome" => "success",
 "result" => {
 "durable" => true,
 "entries" => ["queues/myQueue"],
 "selector" => undefined
 }
}

A number of additional commands to maintain the JMS subsystem are available as well:

[standalone@localhost:9990 /] jms-queue --help --commands
add
...
remove
To read the description of a specific command execute 'jms-queue command_name --help'.

9.7.5. Dead Letter & Redelivery

Some of the settings are applied against an address wild card instead of a specific messaging
destination. The dead letter queue and redelivery settings belong into this group:

153

<subsystem xmlns="urn:jboss:domain:messaging-activemq:1.0">
 <server name="default">
 [...]
 <address-setting name="#"
 dead-letter-address="jms.queue.DLQ"
 expiry-address="jms.queue.ExpiryQueue"
 [...] />

~(See standalone/configuration/standalone-full.xml)~

9.7.6. Security Settings for Artemis addresses and JMS destinations

Security constraints are matched against an address wildcard, similar to the DLQ and redelivery
settings.

<subsystem xmlns="urn:jboss:domain:messaging-activemq:1.0">
 <server name="default">
 [...]
 <security-setting name="#">
 <role name="guest"
 send="true"
 consume="true"
 create-non-durable-queue="true"
 delete-non-durable-queue="true"/>

~(See standalone/configuration/standalone-full.xml)~

9.7.7. Security Domain for Users

By default, Artemis will use the " other`" JAAS security domain. This domain is used to
authenticate users making connections to Artemis and then they are authorized to perform

specific functions based on their role(s) and the `security-settings described above. This
domain can be changed by using the security-domain, e.g.:

<subsystem xmlns="urn:jboss:domain:messaging-activemq:1.0">
 <server name="default">
 <security domain="mySecurityDomain" />
 [...]

9.7.8. Using the Elytron Subsystem

You can also use the elytron subsystem to secure the messaging-activemq subsystem.

To use an Elytron security domain:

1. Undefine the legacy security domain.

154

/subsystem=messaging-activemq/server=default:undefine-attribute(name=security-
domain)

2. Set an Elytron security domain.

/subsystem=messaging-activemq/server=default:write-attribute(name=elytron-domain,
value=myElytronSecurityDomain)

You can only define either security-domain or elytron-domain, but you cannot have
both defined at the same time. If neither is defined, WildFly will use the security-
domain default value of other, which maps to the other legacy security domain.

9.7.9. Cluster Authentication

If the Artemis server is configured to be clustered, it will use the cluster 's user and password
attributes to connect to other Artemis nodes in the cluster.

If you do not change the default value of <cluster-password>, Artemis will fail to authenticate with
the error:

HQ224018: Failed to create session:
HornetQExceptionerrorType=CLUSTER_SECURITY_EXCEPTION message=HQ119099: Unable to
authenticate cluster user: HORNETQ.CLUSTER.ADMIN.USER

To prevent this error, you must specify a value for <cluster-password>. It is possible to encrypt this
value by following this guide.

Alternatively, you can use the system property jboss.messaging.cluster.password to specify the
cluster password from the command line.

9.7.10. Deployment of -jms.xml files

Starting with WildFly 10.1, you have the ability to deploy a -jms.xml file defining JMS destinations,
e.g.:

155

https://access.redhat.com/site/documentation/en-US/JBoss_Enterprise_Application_Platform/6.1/html/Security_Guide/sect-Password_Vaults_for_Sensitive_Strings.html

<?xml version="1.0" encoding="UTF-8"?>
<messaging-deployment xmlns="urn:jboss:messaging-activemq-deployment:1.0">
 <server name="default">
 <jms-destinations>
 <jms-queue name="sample">
 <entry name="jms/queue/sample"/>
 <entry name="java:jboss/exported/jms/queue/sample"/>
 </jms-queue>
 </jms-destinations>
 </server>
</messaging-deployment>

This feature is primarily intended for development as destinations deployed this
way can not be managed with any of the provided management tools (e.g. console,
CLI, etc).

9.7.11. JMS Bridge

The function of a JMS bridge is to consume messages from a source JMS destination, and send them
to a target JMS destination. Typically either the source or the target destinations are on different
servers. The bridge can also be used to bridge messages from other non Artemis JMS servers, as
long as they are JMS 1.1 compliant.

The JMS Bridge is provided by the Artemis project. For a detailed description of the available
configuration properties, please consult the project documentation.

Modules for other messaging brokers

Source and target JMS resources (destination and connection factories) are looked up using JNDI. If
either the source or the target resources are managed by another messaging server than WildFly,
the required client classes must be bundled in a module. The name of the module must then be
declared when the JMS Bridge is configured.

The use of a JMS bridges with any messaging provider will require to create a module containing
the jar of this provider.

Let’s suppose we want to use an hypothetical messaging provider named AcmeMQ. We want to
bridge messages coming from a source AcmeMQ destination to a target destination on the local
WildFly messaging server. To lookup AcmeMQ resources from JNDI, 2 jars are required, acmemq-
1.2.3.jar, mylogapi-0.0.1.jar (please note these jars do not exist, this is just for the example purpose).
We must not include a JMS jar since it will be provided by a WildFly module directly.

To use these resources in a JMS bridge, we must bundle them in a WildFly module:

in JBOSS_HOME/modules, we create the layout:

156

modules/
`-- org
 `-- acmemq
 `-- main
 |-- acmemq-1.2.3.jar
 |-- mylogapi-0.0.1.jar
 `-- module.xml

We define the module in module.xml:

<?xml version="1.0" encoding="UTF-8"?>
<module xmlns="urn:jboss:module:1.1" name="org.acmemq">
 <properties>
 <property name="jboss.api" value="private"/>
 </properties>

 <resources>
 <!-- insert resources required to connect to the source or target -->
 <!-- messaging brokers if it not another WildFly instance -->
 <resource-root path="acmemq-1.2.3.jar" />
 <resource-root path="mylogapi-0.0.1.jar" />
 </resources>

 <dependencies>
 <!-- add the dependencies required by JMS Bridge code -->
 <module name="javax.api" />
 <module name="javax.jms.api" />
 <module name="javax.transaction.api"/>
 <module name="org.jboss.remote-naming"/>
 <!-- we depend on org.apache.activemq.artemis module since we will send
messages to -->
 <!-- the Artemis server embedded in the local WildFly instance -->
 <module name="org.apache.activemq.artemis" />
 </dependencies>
</module>

Configuration

A JMS bridge is defined inside a jms-bridge section of the messaging-activemq subsystem in the XML
configuration files.

157

<subsystem xmlns="urn:jboss:domain:messaging-activemq:1.0">
 <jms-bridge name="myBridge" module="org.acmemq">
 <source connection-factory="ConnectionFactory"
 destination="sourceQ"
 user="user1"
 password="pwd1"
 quality-of-service="AT_MOST_ONCE"
 failure-retry-interval="500"
 max-retries="1"
 max-batch-size="500"
 max-batch-time="500"
 add-messageID-in-header="true">
 <source-context>
 <property name="java.naming.factory.initial"
 value="org.acmemq.jndi.AcmeMQInitialContextFactory"/>
 <property name="java.naming.provider.url"
 value="tcp://127.0.0.1:9292"/>
 </source-context>
 </source>
 <target connection-factory"/jms/invmTargetCF"
 destination="/jms/targetQ" />
 </target>
 </jms-bridge>
</subsystem>

The source and target sections contain the name of the JMS resource (connection-factory and
destination) that will be looked up in JNDI. It optionally defines the user and password credentials. If
they are set, they will be passed as arguments when creating the JMS connection from the looked
up ConnectionFactory. It is also possible to define JNDI context properties in the source-context and
target-context sections. If these sections are absent, the JMS resources will be looked up in the local
WildFly instance (as it is the case in the target section in the example above).

Management commands

A JMS Bridge can also be managed using the WildFly command line interface:

158

[standalone@localhost:9990 /] /subsystem=messaging/jms-bridge=myBridge/:add(module=
"org.acmemq",
 source-destination="sourceQ",
 source-connection-factory="ConnectionFactory",
 source-user="user1",
 source-password="pwd1",
 source-context={"java.naming.factory.initial" =>
"org.acmemq.jndi.AcmeMQInitialContextFactory",
 "java.naming.provider.url" => "tcp://127.0.0.1:9292"},
 target-destination="/jms/targetQ",
 target-connection-factory="/jms/invmTargetCF",
 quality-of-service=AT_MOST_ONCE,
 failure-retry-interval=500,
 max-retries=1,
 max-batch-size=500,
 max-batch-time=500,
 add-messageID-in-header=true)
{"outcome" => "success"}

You can also see the complete JMS Bridge resource description from the CLI:

[standalone@localhost:9990 /] /subsystem=messaging/jms-bridge=*/:read-resource-
description
{
 "outcome" => "success",
 "result" => [{
 "address" => [
 ("subsystem" => "messaging"),
 ("jms-bridge" => "*")
],
 "outcome" => "success",
 "result" => {
 "description" => "A JMS bridge instance.",
 "attributes" => {
 ...
 }
 }]
}

9.7.12. Component Reference

The messaging-activemq subsystem is provided by the Artemis project. For a detailed description of
the available configuration properties, please consult the project documentation.

• Artemis Homepage: http://activemq.apache.org/artemis/

• Artemis User Documentation: http://activemq.apache.org/artemis/docs.html

159

http://activemq.apache.org/artemis/
http://activemq.apache.org/artemis/docs.html

9.7.13. Connect a pooled-connection-factory to a Remote Artemis Server

The messaging-activemq subsystem allows to configure a pooled-connection-factory resource to let a
local client deployed in WildFly connect to a remote Artemis server.

The configuration of such a pooled-connection-factory is done in 3 steps:

\1. create an outbound-socket-binding pointing to the remote messaging server:

 /socket-binding-group=standard-sockets/remote-destination-outbound-socket-binding
=remote-artemis:add(host=<server host>, port=61616)

\2. create a remote-connector referencing the outbound-socket-binding created at step (1).

 /subsystem=messaging-activemq/server=default/remote-connector=remote-artemis:add
(socket-binding=remote-artemis)

\3. create a pooled-connection-factory referencing the remote-connector created at step (2).

 /subsystem=messaging-activemq/server=default/pooled-connection-factory=remote-
artemis:add(connectors=[remote-artemis], entries=[java:/jms/remoteCF])

Configuration of a MDB using a pooled-connection-factory

When a pooled-connection-factory is configured to connect to a remote Artemis, it is possible to
configure Message-Driven Beans (MDB) to have them consume messages from this remote server.

The MDB must be annotated with the @ResourceAdapter annotation using the name of the pooled-
connection-factory resource

import org.jboss.ejb3.annotation.ResourceAdapter;

 @ResourceAdapter("remote-artemis")
 @MessageDriven(name = "MyMDB", activationConfig = {
 ...
})
public class MyMDB implements MessageListener {
 public void onMessage(Message message) {
 ...
 }
}

If the MDB needs to produce messages to the remote server, it must inject the pooled-connection-
factory by looking it up in JNDI using one of its entries.

160

@Inject
@JMSConnectionFactory("java:/jms/remoteCF")
private JMSContext context;

Configuration of the destination

A MDB must also specify which destination it will consume messages from.

The standard way is to define a destinationLookup activation config property that corresponds to a
JNDI lookup on the local server.
When the MDB is consuming from a remote Artemis server, there may not have such a JNDI
binding in the local WildFly.
It is possible to use the naming subsystem to configure external context federation to have local
JNDI bindings delegating to external bindings.

However there is a simpler solution to configure the destination when using the Artemis Resource
Adapter.
Instead of using JDNI to lookup the JMS Destination resource, you can just specify the name of the
destination (as configured in the remote Artemis server) using the destination activation config
property and set the useJNDI activation config property to false to let the Artemis Resource Adapter
create automatically the JMS destination without requiring any JNDI lookup.

@ResourceAdapter("remote-artemis")
@MessageDriven(name = "MyMDB", activationConfig = {
 @ActivationConfigProperty(propertyName = "useJNDI", propertyValue = "
false"),
 @ActivationConfigProperty(propertyName = "destination", propertyValue =
"myQueue"),
 @ActivationConfigProperty(propertyName = "destinationType", propertyValue =
"javax.jms.Queue"), 
 @ActivationConfigProperty(propertyName = "acknowledgeMode", propertyValue = "Auto-
acknowledge")
})
public class MyMDB implements MessageListener {
 ...
}

These properties configure the MDB to consume messages from the JMS Queue named myQueue
hosted on the remote Artemis server.
In most cases, such a MDB does not need to lookup other destinations to process the consumed
messages and it can use the JMSReplyTo destination if it is defined on the message.
If the MDB needs any other JMS destinations defined on the remote server, it must use client-side
JNDI by following the Artemis documentation or configure external configuration context in the
naming subsystem (which allows to inject the JMS resources using the @Resource annotation).

161

#src-557098
http://activemq.apache.org/artemis/docs/1.1.0/using-jms.html#jndi-configuration

9.7.14. Backward & Forward Compatibility

WildFly 10 supports both backwards and forwards compatibility with legacy versions that were
using HornetQ as their messaging brokers (such as JBoss AS7, WildFly 10.1 & 9).
These two compatibility modes are provided by the ActiveMQ Artemis project that supports the
HornetQ’s CORE protocol:

• backward compatibility: WildFly 10 JMS clients (using Artemis) can connect to legacy app
server (running HornetQ)

• forward compatibility: legacy JMS clients (using HornetQ) can connect to WildFly 10 app server
(running Artemis).

Forward Compatibility

Forward compatibility requires no code change in legacy JMS clients. It is provided by WildFly 10
messaging-activemq subsystem and its resources.

• legacy-connection-factory is a subresource of the messaging-activemq’s `server and can be used
to store in JNDI a HornetQ-based JMS ConnectionFactory.

<subsystem xmlns="urn:jboss:domain:messaging-activemq:1.0"> 
 <server name="default">
 ...
 <legacy-connection-factory name="legacyConnectionFactory-discovery" 
 entries=
"java:jboss/exported/jms/RemoteConnectionFactory"
 ... />
 </server>
</subsystem>

• Legacy HornetQ-based JMS destinations can also be configured by providing a legacy-entries
attribute to the jms-queue and jms-topic resource.

 <jms-queue name="myQueue"
 entries="java:jboss/exported/jms/myQueue-new"
 legacy-entries="java:jboss/exported/jms/myQueue" />
 <jms-topic name="testTopic"
 entries="java:jboss/exported/jms/myTopic-new"
 legacy-entries="java:jboss/exported/jms/myTopic" />

The legacy-entries must be used by legacy JMS clients (using HornetQ) while the regular entries
are for WildFly 10 JMS clients (using Artemis).

The legacy JMS client will then lookup this legacy JMS resources to communicate with WildFly 10.
To avoid any code change in the legacy JMS clients, the legacy JNDI entries must match the lookup
expected by the legacy JMS client.

162

Migration

During migration, the legacy messaging subsystem will create legacy-connection-factory resource
and add legacy-entries to the jms-queue and jms-topic resource if the boolean attribute add-legacy-
entries is set to true for its migrate operation. If that is the case, the legacy entries in the migrated
messaging-activemq subsystem will correspond to the entries specified in the legacy messaging
subsystem and the regular entries will be created with a -new suffix.
If add-legacy-entries is set to false during migration, no legacy resources will be created in the
messaging-activemq subsystem and legacy JMS clients will not be able to communicate with WildFly
10 servers.

Backward Compatibility

Backward compatibility requires no configuration change in the legacy server.
WildFly 10 JMS clients do not look up resources on the legacy server but uses client-side JNDI to
create their JMS resources. Artemis JMS client can then uses these resources to communicate with
the legacy server using the HornetQ CORE protocol.

Artemis supports Client-side JNDI to create JMS resources (ConnectionFactory and Destination).

For example, if a WidFly 10 JMS clients wants to communicate with a legacy server using a JMS
queue named myQueue, it must use the following properties to configure its JNDI InitialContext:

java.naming.factory.initial=org.apache.activemq.artemis.jndi.ActiveMQInitialContextFac
tory
connectionFactory.jms/ConnectionFactory=tcp://<legacy server address>:5445? \

protocolManagerFactoryStr=org.apache.activemq.artemis.core.protocol.hornetq.client.Hor
netQClientProtocolManagerFactory
queue.jms/myQueue=myQueue

It can then use the jms/ConnectionFactory name to create the JMS ConnectionFactory and
jms/myQueue to create the JMS Queue.
Note that the property
protocolManagerFactoryStr=org.apache.activemq.artemis.core.protocol.hornetq.client.HornetQClien

tProtocolManagerFactory is mandatory when specifying the URL of the legacy connection factory so
that the Artemis JMS client can communicate with the HornetQ broker in the legacy server.

9.7.15. AIO - NIO for messaging journal

Apache ActiveMQ Artemis (like HornetQ beforehand) ships with a high performance journal.
Since Apache ActiveMQ Artemis handles its own persistence, rather than relying on a database or
other 3rd party persistence engine it is very highly optimised for the specific messaging use cases.
The majority of the journal is written in Java, however we abstract out the interaction with the
actual file system to allow different pluggable implementations.

Apache ActiveMQ Artemis ships with two implementations:

• Java NIO.

163

http://activemq.apache.org/artemis/docs/1.1.0/using-jms.html#jndi-configuration

The first implementation uses standard Java NIO to interface with the file system. This provides
extremely good performance and runs on any platform where there’s a Java 6+ runtime.

• Linux Asynchronous IO

The second implementation uses a thin native code wrapper to talk to the Linux asynchronous IO
library (AIO). With AIO, Apache ActiveMQ Artemis will be called back when the data has made it to
disk, allowing us to avoid explicit syncs altogether and simply send back confirmation of
completion when AIO informs us that the data has been persisted.

Using AIO will typically provide even better performance than using Java NIO.

The AIO journal is only available when running Linux kernel 2.6 or later and after having installed
libaio (if it’s not already installed).

Also, please note that AIO will only work with the following file systems: ext2, ext3, ext4, jfs, xfs.
With other file systems, e.g. NFS it may appear to work, but it will fall back to a slower synchronous
behaviour. Don’t put the journal on a NFS share!

One point that should be added is that AIO doesn’t work well with encrypted partitions, thus
you have to move to NIO on those.

What are the symptoms of an AIO isssue ?

AIO issue on WildFly 10

If you see the following exception in your WildFly log file / console

[org.apache.activemq.artemis.core.server] (ServerService Thread Pool -- 64) AMQ222010:
Critical IO Error, shutting down the server.
file=AIOSequentialFile:/home/wildfly/wildfly-
10.0.0.Final/standalone/data/activemq/journal/activemq-data-2.amq, message=Cannot open
file:The Argument is invalid: java.io.IOException: Cannot open file:The Argument is
invalid
 at org.apache.activemq.artemis.jlibaio.LibaioContext.open(Native Method)

that means that AIO isn’t working properly on your system.

To use NIO instead execute the following commnd using jboss-cli :

/subsystem=messaging-activemq/server=default:write-attribute(name=journal-type, value
=NIO)

You need to reload or restart your server and you should see the following trace in your server
console :

INFO [org.apache.activemq.artemis.core.server] (ServerService Thread Pool -- 64)
AMQ221013: Using NIO Journal

164

AIO issue on WildFly 9

[org.hornetq.core.server] (ServerService Thread Pool -- 64) HQ222010: Critical IO
Error, shutting down the server. file=AIOSequentialFile:/home/wildfly/wildfly-
9.0.2.Final/standalone/data/messagingjournal/hornetq-data-1.hq, message=Can't open
file: HornetQException[errorType=NATIVE_ERROR_CANT_OPEN_CLOSE_FILE message=Can't open
file]
 at org.hornetq.core.libaio.Native.init(Native Method)

that means that AIO isn’t working properly on your system.

To use NIO instead execute the following commnd using jboss-cli :

/subsystem=messaging/hornetq-server=default:write-attribute(name=journal-type,value
=NIO)

You need to reload or restart your server and you see the following trace in your server console :

INFO [org.hornetq.core.server] (ServerService Thread Pool -- 64) HQ221013: Using NIO
Journal

9.7.16. JDBC Store for Messaging Journal

The Artemis server that are integrated to WildFly can be configured to use a JDBC store for its
messaging journal instead of its file-based journal.
The server resource of the messaging-activemq subsystem needs to configure its journal-datasource
attribute to be able to use JDBC store. If this attribute is not defined, the regular file-base journal
will be used for the Artemis server.
This attribute value must correspond to a data source defined in the datasource subsystem.

For example, if the datasources subsystem defines an ExampleDS data source at
/subsystem=datasources/data-source=ExampleDS, the Artemis server can use it for its JDBC store with
the operation:

/subsystem=messaging-activemq/server=default:write-attribute(name=journal-datasource,
value=ExampleDS)

Artemis JDBC store uses SQL commands to create the tables used to persist its information.
These SQL commands may differ depending on the type of database. The SQL commands used by
the JDBC store are located in the file at:

$JBOSS_HOME/modules/system/layers/base/org/wildfly/extension/messaging-
activemq/main/database/journal-sql.properties

165

By default, "vanilla" SQL commands are used to communicate with the database. However some
databases requires specific commands to create table, update content, etc.

The journal-sql.properties can also specify these provider-specific commands. You can customize
them by adding a suffix to the vanilla SQL properties.

The suffix is determined based on information from the JDBC driver and the connection metadata.
If the type of database is not supported by the code, you can specify it explicitly with the journal-
database property on the server resource.

Artemis uses different JDBC tables to store its bindings information, the persistent messages and
the large messages (paging is not supported yet).

The name of these tables can be configured with the journal-bindings-table, journal-messages-
table, journal-page-store-table, and journal-large-messages-table.

Reference

• Artemis JDBC Persistence - http://activemq.apache.org/artemis/docs/1.5.0/
persistence.html#configuring-jdbc-persistence

9.8. Security subsystem configuration
The security subsystem is the subsystem that brings the security services provided by PicketBox to
the WildFly 10.1 server instances.

If you are looking to secure the management interfaces for the management of the domain then
you should read the Securing the Management Interfaces chapter as the management interfaces
themselves are not run within a WildFly process so use a custom configuration.

9.8.1. Structure of the Security Subsystem

When deploying applications to WildFly most of the time it is likely that you would be deploying a
web application or EJBs and just require a security domain to be defined with login modules to
verify the users identity, this chapter aims to provide additional detail regarding the architecture
and capability of the security subsystem however if you are just looking to define a security domain
and leave the rest to the container please jump to the security-domains section.

The security subsystem operates by using a security context associated with the current request,
this security context then makes available to the relevant container a number of capabilities from
the configured security domain, the capabilities exposed are an authentication manager, an
authorization manager, an audit manager and a mapping manager.

Authentication Manager

The authentication manager is the component that performs the actual authentication taking the
declared users identity and their credential so that the login context for the security domain can be
used to 'login' the user using the configured login module or modules.

166

http://activemq.apache.org/artemis/docs/1.5.0/persistence.html#configuring-jdbc-persistence
http://activemq.apache.org/artemis/docs/1.5.0/persistence.html#configuring-jdbc-persistence
http://www.jboss.org/picketbox
#src-557233
#src-557233_Securitysubsystemconfiguration-security-domains

Authorization Manager

The authorization manager is a component which can be obtained by the container from the
current security context to either obtain information about a users roles or to perform an
authorization check against a resource for the currently authenticated user.

Audit Manager

The audit manager from the security context is the component that can be used to log audit events
in relation to the security domain.

Mapping Manager

The mapping manager can be used to assign additional principals, credentials, roles or attributes to
the authenticated subject.

9.8.2. Security Subsystem Configuration

By default a lot of defaults have already been selected for the security subsystem and unless there
is a specific implementation detail you need to change, these defaults should not require
modification. This chapter describes all of the possible configuration attributes for completeness
but do keep in mind that not all will need to be changed.

The security subsystem is enabled by default by the addition of the following extension: -

<extension module="org.jboss.as.security"/>

The namespace used for the configuration of the security subsystem is
urn:jboss:domain:security:1.0, the configuration is defined within the <subsystem> element from
this namespace.

The <subsystem> element can optionally contain the following child elements.

• security-management

• subject-factory

• security-domains

• security-properties

security-management

This element is used to override some of the high level implementation details of the PicketBox
implementation if you have a need to change some of this behaviour.

The element can have any or the following attributes set, all of which are optional.

167

authentication-manager-class-name Specifies the AuthenticationManager
implementation class name to use.

deep-copy-subject-mode Sets the copy mode of subjects done by the
security managers to be deep copies that makes
copies of the subject principals and credentials if
they are cloneable. It should be set to true if
subject include mutable content that can be
corrupted when multiple threads have the same
identity and cache flushes/logout clearing the
subject in one thread results in subject
references affecting other threads. Default value
is "false".

default-callback-handler-class-name Specifies a global class name for the
CallbackHandler implementation to be used
with login modules.

authorization-manager-class-name Attribute specifies the AuthorizationManager
implementation class name to use.

audit-manager-class-name Specifies the AuditManager implementation
class name to use.

identity-trust-manager-class-name Specifies the IdentityTrustManager
implementation class name to use.

mapping-manager-class-name Specifies the MappingManager implementation
class name to use.

subject-factory

The subject factory is responsible for creating subject instances, this also makes use of the
authentication manager to actually verify the caller. It is used mainly by JCA components to
establish a subject. It is not likely this would need to be overridden but if it is required the "subject-
factory-class-name" attribute can be specified on the subject-factory element.

security-domains

This portion of the configuration is where the bulk of the security subsystem configuration will
actually take place for most administrators, the security domains contain the configuration which is
specific to a deployment.

The security-domains element can contain numerous <security-domain> definitions, a security-
domain can have the following attributes set:

name The unique name of this security domain.

extends Although version 1.0 of the security subsystem
schema contained an 'extends' attribute, security
domain inheritance is not supported and this
attribute should not be used.

168

name The unique name of this security domain.

cache-type The type of authentication cache to use with this
domain. If this attribute is removed no cache
will be used. Allowed values are "default" or
"infinispan"

The following elements can then be set within the security-domain to configure the domain
behaviour.

authentication

The authentication element is used to hold the list of login modules that will be used for
authentication when this domain is used, the structure of the login-module element is:

<login-module code="..." flag="..." module="...">
 <module-option name="..." value="..."/>
</login-module>

The code attribute is used to specify the implementing class of the login module which can either be
the full class name or one of the abbreviated names from the following list:

Code Classname

Client org.jboss.security.ClientLoginModule

Certificate org.jboss.security.auth.spi.BaseCertLoginModule

CertificateUsers org.jboss.security.auth.spi.BaseCertLoginModule

CertificateRoles org.jboss.security.auth.spi.CertRolesLoginModul
e

Database org.jboss.security.auth.spi.DatabaseServerLogin
Module

DatabaseCertificate org.jboss.security.auth.spi.DatabaseCertLoginMo
dule

DatabaseUsers org.jboss.security.auth.spi.DatabaseServerLogin
Module

Identity org.jboss.security.auth.spi.IdentityLoginModule

Ldap org.jboss.security.auth.spi.LdapLoginModule

LdapExtended org.jboss.security.auth.spi.LdapExtLoginModule

RoleMapping org.jboss.security.auth.spi.RoleMappingLoginMo
dule

RunAs org.jboss.security.auth.spi.RunAsLoginModule

Simple org.jboss.security.auth.spi.SimpleServerLoginMo
dule

ConfiguredIdentity org.picketbox.datasource.security.ConfiguredIde
ntityLoginModule

169

Code Classname

SecureIdentity org.picketbox.datasource.security.SecureIdentity
LoginModule

PropertiesUsers org.jboss.security.auth.spi.PropertiesUsersLogin
Module

SimpleUsers org.jboss.security.auth.spi.SimpleUsersLoginMo
dule

LdapUsers org.jboss.security.auth.spi.LdapUsersLoginModu
le

Kerberos com.sun.security.auth.module.Krb5LoginModule

SPNEGOUsers org.jboss.security.negotiation.spnego.SPNEGOLo
ginModule

AdvancedLdap org.jboss.security.negotiation.AdvancedLdapLog
inModule

AdvancedADLdap org.jboss.security.negotiation.AdvancedADLogin
Module

UsersRoles org.jboss.security.auth.spi.UsersRolesLoginModu
le

The module attribute specifies the name of the JBoss Modules module from which the class
specified by the code attribute should be loaded. Specifying it is not necessary if one of the
abbreviated names in the above list is used.

The flag attribute is used to specify the JAAS flag for this module and should be one of required,
requisite, sufficient, or optional.

The module-option element can be repeated zero or more times to specify the module options as
required for the login module being configured. It requires the name and value attributes.

See Authentication Modules for further details on the various modules listed above.

authentication-jaspi

The authentication-jaspi is used to configure a Java Authentication SPI (JASPI) provider as the
authentication mechanism. A security domain can have either a <authentication> or a
<authentication-jaspi> element, but not both. We set up JASPI by configuring one or more login
modules inside the login-module-stack element and setting up an authentication module. Here is
the structure of the authentication-jaspi element:

170

Authentication_Modules.html

<login-module-stack name="...">
 <login-module code="..." flag="..." module="...">
 <module-option name="..." value="..."/>
 </login-module>
</login-module-stack>
<auth-module code="..." login-module-stack-ref="...">
 <module-option name="..." value="..."/>
</auth-module>

The login-module-stack-ref attribute value must be the name of the login-module-stack element to
be used. The sub-element login-module is configured just like in the authentication part

authorization

Authorization in the AS container is normally done with RBAC (role based access control) but there
are situations where a more fine grained authorization policy is required. The authorization
element allows definition of different authorization modules to used, such that authorization can
be checked with JACC (Java Authorization Contract for Containers) or XACML (eXtensible Access
Control Markup Language). The structure of the authorization element is:

<policy-module code="..." flag="..." module="...">
 <module-option name="..." value="..."/>
</policy-module>

The code attribute is used to specify the implementing class of the policy module which can either
be the full class name or one of the abbreviated names from the following list:

Code Classname

DenyAll org.jboss.security.authorization.modules.AllDen
yAuthorizationModule

PermitAll org.jboss.security.authorization.modules.AllPer
mitAuthorizationModule

Delegating org.jboss.security.authorization.modules.Delegat
ingAuthorizationModule

Web org.jboss.security.authorization.modules.WebAu
thorizationModule

JACC org.jboss.security.authorization.modules.JACCAu
thorizationModule

XACML org.jboss.security.authorization.modules.XACML
AuthorizationModule

The module attribute specifies the name of the JBoss Modules module from which the class
specified by the code attribute should be loaded. Specifying it is not necessary if one of the
abbreviated names in the above list is used.

The flag attribute is used to specify the JAAS flag for this module and should be one of required,

171

#src-557233_Securitysubsystemconfiguration-authentication

requisite, sufficient, or optional.

The module-option element can be repeated zero or more times to specify the module options as
required for the login module being configured. It requires the name and value attributes.

mapping

The mapping element defines additional mapping of principals, credentials, roles and attributes for
the subject. The structure of the mapping element is:

<mapping-module type="..."code="..." module="...">
 <module-option name="..." value="..."/>
</mapping-module>

The type attribute reflects the type of mapping of the provider and should be one of principal,
credential, role or attribute. By default "role" is the type used if the attribute is not set.

The code attribute is used to specify the implementing class of the login module which can either be
the full class name or one of the abbreviated names from the following list:

Code Classname

PropertiesRoles org.jboss.security.mapping.providers.role.Prope
rtiesRolesMappingProvider

SimpleRoles org.jboss.security.mapping.providers.role.Simpl
eRolesMappingProvider

DeploymentRoles org.jboss.security.mapping.providers.Deployme
ntRolesMappingProvider

DatabaseRoles org.jboss.security.mapping.providers.role.Datab
aseRolesMappingProvider

LdapRoles org.jboss.security.mapping.providers.role.LdapR
olesMappingProvider

The module attribute specifies the name of the JBoss Modules module from which the class
specified by the code attribute should be loaded. Specifying it is not necessary if one of the
abbreviated names in the above list is used.

The module-option element can be repeated zero or more times to specify the module options as
required for the login module being configured. It requires the name and value attributes.

audit

The audit element can be used to define a custom audit provider. The default implementation used
is org.jboss.security.audit.providers.LogAuditProvider. The structure of the audit element is:

<provider-module code="..." module="...">
 <module-option name="..." value="..."/>
</provider-module>

172

The code attribute is used to specify the implementing class of the provider module.

The module attribute specifies the name of the JBoss Modules module from which the class
specified by the code attribute should be loaded.

The module-option element can be repeated zero or more times to specify the module options as
required for the login module being configured. It requires the name and value attributes.

jsse

The jsse element defines configuration for keystores and truststores that can be used for SSL
context configuration or for certificate storing/retrieving.

The set of attributes (all of them optional) of this element are:

keystore-password Password of the keystore

keystore-type Type of the keystore. By default it’s "JKS"

keystore-url URL where the keystore file can be found

keystore-provider Provider of the keystore. The default JDK
provider for the keystore type is used if this
attribute is null

keystore-provider-argument String that can be passed as the argument of the
keystore Provider constructor

key-manager-factory-algorithm Algorithm of the KeyManagerFactory. The
default JDK algorithm of the key manager
factory is used if this attribute is null

key-manager-factory-provider Provider of the KeyManagerFactory. The default
JDK provider for the key manager factory
algorithm is used if this attribute is null

truststore-password Password of the truststore

truststore-type Type of the truststore. By deafult it’s "JKS"

truststore-url URL where the truststore file can be found

truststore-provider Provider of the truststore. The default JDK
provider for the truststore type is used if this
attribute is null

truststore-provider-argument String that can be passed as the argument of the
truststore Provider constructor

trust-manager-factory-algorithm Algorithm of the TrustManagerFactory. The
default JDK algorithm of the trust manager
factory is used if this attribute is null

trust-manager-factory-provider Provider of the TrustManagerFactory. The
default JDK provider for the trust manager
factory algorithm is used if this attribute is null

client-alias Alias of the keystore to be used when creating
client side SSL sockets

173

keystore-password Password of the keystore

server-alias Alias of the keystore to be used when creating
server side SSL sockets

service-auth-token Validation token to enable third party services to
retrieve a keystore Key. This is typically used to
retrieve a private key for signing purposes

client-auth Flag to indicate if the server side SSL socket
should require client authentication. Default is
"false"

cipher-suites Comma separated list of cipher suites to be used
by a SSLContext

protocols Comma separated list of SSL protocols to be used
by a SSLContext

The optional additional-properties element can be used to include other options. The structure of
the jsse element is:

<jsse keystore-url="..." keystore-password="..." keystore-type="..." keystore-
provider="..." keystore-provider-argument="..." key-manager-factory-algorithm="..."
key-manager-factory-provider="..." truststore-url="..." truststore-password="..."
truststore-type="..." truststore-provider="..." truststore-provider-argument="..."
trust-manager-factory-algorithm="..." trust-manager-factory-provider="..." client-
alias="..." server-alias="..." service-auth-token="..." client-auth="..." cipher-
suites="..." protocols="...">
 <additional-properties>x=y
 a=b
 </additional-properties>
</jsse>

security-properties

This element is used to specify additional properties as required by the security subsystem,
properties are specified in the following format:

<security-properties>
 <property name="..." value="..."/>
</security-properties>

The property element can be repeated as required for as many properties need to be defined.

Each property specified is set on the java.security.Security class.

9.8.3. Authentication Modules

In this section we will describe each login module’s options available.

174

Client

This login module is designed to establish caller identity and credentials when WildFly is acting a
client. It should never be used as part of a security domain used for actual server authentication.

Options Usage Description

multi-threaded optional Set to true if each thread has its
own principal and credential
storage. Set to false to indicate
that all threads in the VM share
the same identity and
credential. Default is false

restore-login-identity optional Set to true if the identity and
credential seen at the start of
the login() method should be
restored after the logout()
method is invoked. Default is
false

password-stacking optional Set to useFirstPass to indicate
that this login module should
look for information stored in
the LoginContext to use as the
identity. This option can be used
when stacking other login
modules with this one. Default
is false

Database

This login module is designed to be used for authenticating users against a database backend.

Options Usage Description

dsJndiName required JNDI name of the datasource
containing the tables for users
and roles

principalsQuery required SQL prepared statement to be
executed in order to match the
password. Default is select
Password from Principals
where PrincipalID=?

rolesQuery optional SQL prepared statement to be
executed in order to map roles.
It should be an equivalent to
select Role, RoleGroup from
Roles where PrincipalID=?,
where Role is the role name and
RoleGroup column value should
always be "Roles" with capital R.

175

Options Usage Description

suspendResume optional A boolean flag that specifies
that any existing JTA
transaction be suspended
during DB operations. The
default is true

Certificate

This login module is designed to authenticate users based on X509Certificates. A use case for this is
CLIENT-CERT authentication of a web application.

Options Usage Description

securityDomain optional Name of the security domain
that has the jsse configuration
for the truststore holding the
trusted certificates

verifier optional The class name of the
org.jboss.security.auth.certs.X50
9CertificateVerifier to use for
verification of the login
certificate

If there is no verifier set, this login module will try to validate the user’s certificate with a public
certificate stored in the truststore. The public certificate must be stored in the truststore using the
DN of the certificate as the truststore alias.

CertificateRoles

This login module extends the Certificate login module to add role mapping capabilities from a
properties file. It has the same options plus these additional options:

Options Usage Description

rolesProperties optional Name of the resource/file
containing the roles to assign to
each user. Default is
roles.properties

defaultRolesProperties optional Name of the resource/file to fall
back to if the rolesProperties
file can’t be found. Default is
defaultRoles.properties

roleGroupSeperator optional Character to use as the role
group separator in the role
properties file. Default
character is '.' (period)

The role properties file must be in the format username=role1,role2 where the username is the DN
of the certificate, escaping any equals and space characters. Here is an example:

176

CN\=unit-tests-client,\ OU\=JBoss\ Inc.,\ O\=JBoss\ Inc.,\ ST\=Washington,\
C\=US=JBossAdmin

This would assign the JBossAdmin role to an user that presents a certificate with CN=unit-tests-
client, OU=JBoss Inc., O=JBoss Inc., ST=Washington, C=US as the DN.

DatabaseCertificate

This login module extends the Certificate login to add role mapping capabilities from a database
table. It has the same options plus these additional options:

Options Usage Description

dsJndiName required JNDI name of the datasource
containing the tables for users
and roles

rolesQuery optional SQL prepared statement to be
executed in order to map roles.
It should be an equivalent to
select Role, RoleGroup from
Roles where PrincipalID=?,
where Role is the role name and
RoleGroup column value should
always be "Roles" with capital R.
Default is select Role,
RoleGroup from Roles where
PrincipalID=?

suspendResume optional A boolean flag that specifies
that any existing JTA
transaction be suspended
during DB operations. The
default is true select Role,
RoleGroup from Roles where
PrincipalID=?

9.9. Web services configuration
JBossWS components are provided to the application server through the webservices subsystem.
JBossWS components handle the processing of WS endpoints. The subsystem supports the
configuration of published endpoint addresses, and endpoint handler chains. A default webservice
subsystem is provided in the server’s domain and standalone configuration files.

9.9.1. Structure of the webservices subsystem

Published endpoint address

JBossWS supports the rewriting of the <soap:address> element of endpoints published in WSDL
contracts. This feature is useful for controlling the server address that is advertised to clients for
each endpoint.

177

The following elements are available and can be modified (all are optional):

Name Type Description

modify-wsdl-address boolean This boolean enables and
disables the address rewrite
functionality.When modify-
wsdl-address is set to true and
the content of <soap:address> is
a valid URL, JBossWS will
rewrite the URL using the
values of wsdl-host and wsdl-
port or wsdl-secure-port.When
modify-wsdl-address is set to
false and the content of
<soap:address> is a valid URL,
JBossWS will not rewrite the
URL. The <soap:address> URL
will be used.When the content
of <soap:address> is not a valid
URL, JBossWS will rewrite it no
matter what the setting of
modify-wsdl-address.If modify-
wsdl-address is set to true and
wsdl-host is not defined or
explicitly set to
'jbossws.undefined.host' the
content of <soap:address> URL
is use. JBossWS uses the
requester’s host when rewriting
the <soap:address>When
modify-wsdl-address is not
defined JBossWS uses a default
value of true.

wsdl-host string The hostname / IP address to be
used for rewriting
<soap:address>.If wsdl-host is
set to jbossws.undefined.host,
JBossWS uses the requester’s
host when rewriting the
<soap:address>When wsdl-host
is not defined JBossWS uses a
default value of
'jbossws.undefined.host'.

wsdl-port int Set this property to explicitly
define the HTTP port that will
be used for rewriting the SOAP
address.Otherwise the HTTP
port will be identified by
querying the list of installed
HTTP connectors.

178

Name Type Description

wsdl-secure-port int Set this property to explicitly
define the HTTPS port that will
be used for rewriting the SOAP
address.Otherwise the HTTPS
port will be identified by
querying the list of installed
HTTPS connectors.

wsdl-uri-scheme string This property explicitly sets the
URI scheme to use for rewriting
<soap:address> . Valid values
are http and https. This
configuration overrides scheme
computed by processing the
endpoint (even if a transport
guaranteeis specified). The
provided values for wsdl-port
and wsdl-secure-port (or their
default values) are used
depending on specified scheme.

wsdl-path-rewrite-rule string This string defines a SED
substitution command (e.g.,
's/regexp/replacement/g') that
JBossWS executes against the
path component of each
<soap:address> URL published
from the server.When wsdl-
path-rewrite-rule is not defined,
JBossWS retains the original
path component of each
<soap:address> URL.When
'modify-wsdl-address' is set to
"false" this element is ignored.

Predefined endpoint configurations

JBossWS enables extra setup configuration data to be predefined and associated with an endpoint
implementation. Predefined endpoint configurations can be used for JAX-WS client and JAX-WS
endpoint setup. Endpoint configurations can include JAX-WS handlers and key/value properties
declarations. This feature provides a convenient way to add handlers to WS endpoints and to set
key/value properties that control JBossWS and Apache CXF internals (see Apache CXF
configuration).

The webservices subsystem provides schema to support the definition of named sets of endpoint
configuration data. Annotation, org.jboss.ws.api.annotation.EndpointConfig is provided to map the
named configuration to the endpoint implementation.

There is no limit to the number of endpoint configurations that can be defined within the
webservices subsystem. Each endpoint configuration must have a name that is unique within the
webservices subsystem. Endpoint configurations defined in the webservices subsystem are

179

https://docs.jboss.org/author/display/JBWS/Apache+CXF+integration#ApacheCXFintegration-Deploymentdescriptorproperties
https://docs.jboss.org/author/display/JBWS/Apache+CXF+integration#ApacheCXFintegration-Deploymentdescriptorproperties
http://www.jboss.org/schema/jbossas/jboss-as-webservices_1_2.xsd

available for reference by name through the annotation to any endpoint in a deployed application.

WildFly ships with two predefined endpoint configurations. Standard-Endpoint-Config is the
default configuration. Recording-Endpoint-Config is an example of custom endpoint configuration
and includes a recording handler.

[standalone@localhost:9999 /] /subsystem=webservices:read-resource
{
 "outcome" => "success",
 "result" => {
 "endpoint" => {},
 "modify-wsdl-address" => true,
 "wsdl-host" => expression "${jboss.bind.address:127.0.0.1}",
 "endpoint-config" => {
 "Standard-Endpoint-Config" => undefined,
 "Recording-Endpoint-Config" => undefined
 }
 }
}

The Standard-Endpoint-Config is a special endpoint configuration. It is used for any
endpoint that does not have an explicitly assigned endpoint configuration.

Endpoint configs

Endpoint configs are defined using the endpoint-config element. Each endpoint configuration may
include properties and handlers set to the endpoints associated to the configuration.

[standalone@localhost:9999 /] /subsystem=webservices/endpoint-config=Recording-
Endpoint-Config:read-resource
{
 "outcome" => "success",
 "result" => {
 "post-handler-chain" => undefined,
 "property" => undefined,
 "pre-handler-chain" => {"recording-handlers" => undefined}
 }
}

A new endpoint configuration can be added as follows:

180

[standalone@localhost:9999 /] /subsystem=webservices/endpoint-config=My-Endpoint-
Config:add
{
 "outcome" => "success",
 "response-headers" => {
 "operation-requires-restart" => true,
 "process-state" => "restart-required"
 }
}

Handler chains

Each endpoint configuration may be associated with zero or more PRE and POST handler chains.
Each handler chain may include JAXWS handlers. For outbound messages the PRE handler chains
are executed before any handler that is attached to the endpoint using the standard means, such as
with annotation @HandlerChain, and POST handler chains are executed after those objects have
executed. For inbound messages the POST handler chains are executed before any handler that is
attached to the endpoint using the standard means and the PRE handler chains are executed after
those objects have executed.

* Server inbound messages
Client --> ... --> POST HANDLER --> ENDPOINT HANDLERS --> PRE HANDLERS --> Endpoint

* Server outbound messages
Endpoint --> PRE HANDLER --> ENDPOINT HANDLERS --> POST HANDLERS --> ... --> Client

The protocol-binding attribute must be used to set the protocols for which the chain will be
triggered.

[standalone@localhost:9999 /] /subsystem=webservices/endpoint-config=Recording-
Endpoint-Config/pre-handler-chain=recording-handlers:read-resource
{
 "outcome" => "success",
 "result" => {
 "protocol-bindings" => "##SOAP11_HTTP ##SOAP11_HTTP_MTOM ##SOAP12_HTTP
##SOAP12_HTTP_MTOM",
 "handler" => {"RecordingHandler" => undefined}
 },
 "response-headers" => {"process-state" => "restart-required"}
}

A new handler chain can be added as follows:

181

[standalone@localhost:9999 /] /subsystem=webservices/endpoint-config=My-Endpoint-
Config/post-handler-chain=my-handlers:add(protocol-bindings="##SOAP11_HTTP")
{
 "outcome" => "success",
 "response-headers" => {
 "operation-requires-restart" => true,
 "process-state" => "restart-required"
 }
}
[standalone@localhost:9999 /] /subsystem=webservices/endpoint-config=My-Endpoint-
Config/post-handler-chain=my-handlers:read-resource
{
 "outcome" => "success",
 "result" => {
 "handler" => undefined,
 "protocol-bindings" => "##SOAP11_HTTP"
 },
 "response-headers" => {"process-state" => "restart-required"}
}

Handlers

JAXWS handler can be added in handler chains:

[standalone@localhost:9999 /] /subsystem=webservices/endpoint-config=Recording-
Endpoint-Config/pre-handler-chain=recording-handlers/handler=RecordingHandler:read-
resource
{
 "outcome" => "success",
 "result" => {"class" => "org.jboss.ws.common.invocation.RecordingServerHandler"},
 "response-headers" => {"process-state" => "restart-required"}
}
[standalone@localhost:9999 /] /subsystem=webservices/endpoint-config=My-Endpoint-
Config/post-handler-chain=my-handlers/handler=foo-handler:add(class=
"org.jboss.ws.common.invocation.RecordingServerHandler")
{
 "outcome" => "success",
 "response-headers" => {
 "operation-requires-restart" => true,
 "process-state" => "restart-required"
 }
}

Endpoint-config handler classloading

182

The class attribute is used to provide the fully qualified class name of the handler.
At deploy time, an instance of the class is created for each referencing deployment.
For class creation to succeed, the deployment classloader must to be able to load
the handler class.

9.9.2. Runtime information

Each web service endpoint is exposed through the deployment that provides the endpoint
implementation. Each endpoint can be queried as a deployment resource. For further information
please consult the chapter "Application Deployment". Each web service endpoint specifies a web
context and a WSDL Url:

[standalone@localhost:9999 /] /deployment="*"/subsystem=webservices/endpoint="*":read-
resource
{
 "outcome" => "success",
 "result" => [{
 "address" => [
 ("deployment" => "jaxws-samples-handlerchain.war"),
 ("subsystem" => "webservices"),
 ("endpoint" => "jaxws-samples-handlerchain:TestService")
],
 "outcome" => "success",
 "result" => {
 "class" => "org.jboss.test.ws.jaxws.samples.handlerchain.EndpointImpl",
 "context" => "jaxws-samples-handlerchain",
 "name" => "TestService",
 "type" => "JAXWS_JSE",
 "wsdl-url" => "http://localhost:8080/jaxws-samples-handlerchain?wsdl"
 }
 }]
}

9.9.3. Component Reference

The web service subsystem is provided by the JBossWS project. For a detailed description of the
available configuration properties, please consult the project documentation.

• JBossWS homepage: http://www.jboss.org/jbossws

• Project Documentation: https://docs.jboss.org/author/display/JBWS

9.10. Resource adapters
Resource adapters are configured through the resource-adapters subsystem. Declaring a new
resource adapter consists of two separate steps: You would need to deploy the .rar archive and
define a resource adapter entry in the subsystem.

183

http://www.jboss.org/jbossws
https://docs.jboss.org/author/display/JBWS

9.10.1. Resource Adapter Definitions

The resource adapter itself is defined within the subsystem resource-adapters:

<subsystem xmlns="urn:jboss:domain:resource-adapters:1.0">
 <resource-adapters>
 <resource-adapter>
 <archive>eis.rar</archive>
 <!-- Resource adapter level config-property -->
 <config-property name="Server">localhost</config-property>
 <config-property name="Port">19000</config-property>
 <transaction-support>XATransaction</transaction-support>
 <connection-definitions>
 <connection-definition class-name=
"com.acme.eis.ra.EISManagedConnectionFactory"
 jndi-name="java:/eis/AcmeConnectionFactory"
 pool-name="AcmeConnectionFactory">
 <!-- Managed connection factory level config-property -->
 <config-property name="Name">Acme Inc</config-property>
 <pool>
 <min-pool-size>10</min-pool-size>
 <max-pool-size>100</max-pool-size>
 </pool>
 <security>
 <application/>
 </security>
 </connection-definition>
 </connection-definitions>
 <admin-objects>
 <admin-object class-name="com.acme.eis.ra.EISAdminObjectImpl"
 jndi-name="java:/eis/AcmeAdminObject">
 <config-property name="Threshold">10</config-property>
 </admin-object>
 </admin-objects>
 </resource-adapter>
 </resource-adapters>
</subsystem>

Note, that only JNDI bindings under java:/ or java:jboss/ are supported.

(See standalone/configuration/standalone.xml)

9.10.2. Using security domains

Information about using security domains can be found at https://community.jboss.org/wiki/
JBossAS7SecurityDomainModel

184

https://community.jboss.org/wiki/JBossAS7SecurityDomainModel
https://community.jboss.org/wiki/JBossAS7SecurityDomainModel

9.10.3. Automatic activation of resource adapter archives

A resource adapter archive can be automatically activated with a configuration by including an
META-INF/ironjacamar.xml in the archive.

The schema can be found at http://docs.jboss.org/ironjacamar/schema/ironjacamar_1_0.xsd

9.10.4. Component Reference

The resource adapter subsystem is provided by the IronJacamar project. For a detailed description
of the available configuration properties, please consult the project documentation.

• IronJacamar homepage: http://www.jboss.org/ironjacamar

• Project Documentation: http://www.jboss.org/ironjacamar/docs

• Schema description: http://docs.jboss.org/ironjacamar/userguide/1.0/en-US/html/
deployment.html#deployingra_descriptor

9.11. Batch (JSR-352) Subsystem Configuration

9.11.1. Overview

The batch subsystem is used to configure an environment for running batch applications. WildFly
uses JBeret for it’s batch implementation. Specific information about JBeret can be found in the
user guide. The resource path, in CLI notation, for the subsystem is subsystem=batch-jberet.

9.11.2. Default Subsystem Configuration

For up to date information about subsystem configuration options see http://wildscribe.github.io/.

9.11.3. Security

A new security-domain attribute was added to the batch-jberet subsystem to allow batch jobs to be
executed under that security domain. Jobs that are stopped as part of a suspend operation will be
restarted on execution of a resume with the original user that started job.

There was a org.wildfly.extension.batch.jberet.deployment.BatchPermission added to allow a
security restraint to various batch functions. The following functions can be controlled with this
permission.

• start

• stop

• restart

• abandon

• read

The read function allows users to use the getter methods from the
javax.batch.operations.JobOperator or read the batch-jberet deployment resource, for example

185

http://docs.jboss.org/ironjacamar/schema/ironjacamar_1_0.xsd
http://www.jboss.org/ironjacamar
http://www.jboss.org/ironjacamar
http://www.jboss.org/ironjacamar/docs
http://docs.jboss.org/ironjacamar/userguide/1.0/en-US/html/deployment.html#deployingra_descriptor
http://docs.jboss.org/ironjacamar/userguide/1.0/en-US/html/deployment.html#deployingra_descriptor
http://wildfly.org
https://github.com/jberet/jsr352
http://jberet.gitbooks.io/jberet-user-guide/content/
CLI_Recipes.adoc
http://wildscribe.github.io/

/deployment=my.war/subsystem=batch-jberet:read-resource.

9.11.4. Deployment Descriptors

There are no deployment descriptors for configuring a batch environment defined by the JSR-352
specification. In WildFly you can use a jboss-all.xml deployment descriptor to define aspects of the
batch environment for your deployment.

In the jboss-all.xml deployment descriptor you can define a named job repository, a new job
repository and/or a named thread pool. A named job repository and named thread pool are
resources defined on the batch subsystem. Only a named thread pool is allowed to be defined in the
deployment descriptor.

Example Named Job Repository and Thread Pool

<jboss umlns="urn:jboss:1.0">
 <batch xmlns="urn:jboss:batch-jberet:1.0">
 <job-repository>
 <named name="batch-ds"/>
 </job-repository>
 <thread-pool name="deployment-thread-pool"/>
 </batch>
</jboss>

Example new Job Repository

<jboss umlns="urn:jboss:1.0">
 <batch xmlns="urn:jboss:batch-jberet:1.0">
 <job-repository>
 <jdbc jndi-name="java:jboss/datasources/ExampleDS"/>
 </job-repository>
 </batch>
</jboss>

9.11.5. Deployment Resources

Some subsystems in WildFly register runtime resources for deployments. The batch subsystem
registers jobs and executions. The jobs are registered using the job name, this is not the job XML
name. Executions are registered using the execution id.

186

https://www.jcp.org/en/jsr/detail?id=352
https://www.jcp.org/en/jsr/detail?id=352
http://wildfly.org
http://wildfly.org

Batch application in a standalone server

[standalone@localhost:9990 /] /deployment=batch-jdbc-chunk.war/subsystem=batch-jberet
:read-resource(recursive=true,include-runtime=true)
{
 "outcome" => "success",
 "result" => {"job" => {
 "reader-3" => {
 "instance-count" => 1,
 "running-executions" => 0,
 "execution" => {"1" => {
 "batch-status" => "COMPLETED",
 "create-time" => "2015-08-07T15:37:06.416-0700",
 "end-time" => "2015-08-07T15:37:06.519-0700",
 "exit-status" => "COMPLETED",
 "instance-id" => 1L,
 "last-updated-time" => "2015-08-07T15:37:06.519-0700",
 "start-time" => "2015-08-07T15:37:06.425-0700"
 }}
 },
 "reader-5" => {
 "instance-count" => 0,
 "running-executions" => 0,
 "execution" => undefined
 }
 }}
}

The batch subsystem resource on a deployment also has 3 operations to interact with batch jobs on
the selected deployment. There is a start-job, stop-job and restart-job operation. The execution
resource also has a stop-job and restart-job operation.

Example start-job

[standalone@localhost:9990 /] /deployment=batch-chunk.war/subsystem=batch-jberet:start
-job(job-xml-name=simple, properties={writer.sleep=5000})
{
 "outcome" => "success",
 "result" => 1L
}

Example stop-job

[standalone@localhost:9990 /] /deployment=batch-chunk.war/subsystem=batch-jberet:stop-
job(execution-id=2)

187

Example restart-job

[standalone@localhost:9990 /] /deployment=batch-chunk.war/subsystem=batch-jberet
:restart-job(execution-id=2)
{
 "outcome" => "success",
 "result" => 3L
}

Result of resource after the 3 executions

[standalone@localhost:9990 /] /deployment=batch-chunk.war/subsystem=batch-jberet:read-
resource(recursive=true, include-runtime=true)
{
 "outcome" => "success",
 "result" => {"job" => {"chunkPartition" => {
 "instance-count" => 2,
 "running-executions" => 0,
 "execution" => {
 "1" => {
 "batch-status" => "COMPLETED",
 "create-time" => "2015-08-07T15:41:55.504-0700",
 "end-time" => "2015-08-07T15:42:15.513-0700",
 "exit-status" => "COMPLETED",
 "instance-id" => 1L,
 "last-updated-time" => "2015-08-07T15:42:15.513-0700",
 "start-time" => "2015-08-07T15:41:55.504-0700"
 },
 "2" => {
 "batch-status" => "STOPPED",
 "create-time" => "2015-08-07T15:44:39.879-0700",
 "end-time" => "2015-08-07T15:44:54.882-0700",
 "exit-status" => "STOPPED",
 "instance-id" => 2L,
 "last-updated-time" => "2015-08-07T15:44:54.882-0700",
 "start-time" => "2015-08-07T15:44:39.879-0700"
 },
 "3" => {
 "batch-status" => "COMPLETED",
 "create-time" => "2015-08-07T15:45:48.162-0700",
 "end-time" => "2015-08-07T15:45:53.165-0700",
 "exit-status" => "COMPLETED",
 "instance-id" => 2L,
 "last-updated-time" => "2015-08-07T15:45:53.165-0700",
 "start-time" => "2015-08-07T15:45:48.163-0700"
 }
 }
 }}}
}

188

Pro Tip

You can filter jobs by an attribute on the execution resource with the query
operation.

View all stopped jobs

/deployment=batch-chunk.war/subsystem=batch-jberet/job=*
/execution=*:query(where=["batch-status", "STOPPED"])

As with all operations you can see details about the operation using the :read-operation-
description operation.

Tab completion

Don’t forget that CLI has tab completion which will complete operations and
attributes (arguments) on operations.

189

Example start-job operation description

[standalone@localhost:9990 /] /deployment=batch-chunk.war/subsystem=batch-jberet:read-
operation-description(name=start-job)
{
 "outcome" => "success",
 "result" => {
 "operation-name" => "start-job",
 "description" => "Starts a batch job.",
 "request-properties" => {
 "job-xml-name" => {
 "type" => STRING,
 "description" => "The name of the job XML file to use when starting
the job.",
 "expressions-allowed" => false,
 "required" => true,
 "nillable" => false,
 "min-length" => 1L,
 "max-length" => 2147483647L
 },
 "properties" => {
 "type" => OBJECT,
 "description" => "Optional properties to use when starting the batch
job.",
 "expressions-allowed" => false,
 "required" => false,
 "nillable" => true,
 "value-type" => STRING
 }
 },
 "reply-properties" => {"type" => LONG},
 "read-only" => false,
 "runtime-only" => true
 }
}

9.12. JSF Configuration

9.12.1. Overview

JSF configuration is handled by the JSF subsystem. The JSF subsystem allows multiple JSF
implementations to be installed on the same WildFly server. In particular, any version of Mojarra
or MyFaces that implements spec level 2.1 or higher can be installed. For each JSF implementation,
a new slot needs to be created under com.sun.jsf-impl, javax.faces.api, and org.jboss.as.jsf-
injection. When the JSF subsystem starts up, it scans the module path to find all of the JSF
implementations that have been installed. The default JSF implementation that WildFly should use
is defined by the default-jsf-impl-slot attribute.

190

9.12.2. Installing a new JSF implementation manually

A new JSF implementation can be manually installed as follows:

Add a module slot for the new JSF implementation JAR

• Create the following directory structure under the WILDFLY_HOME/modules directory:
WILDFLY_HOME/modules/com/sun/jsf-impl/<JSF_IMPL_NAME>-<JSF_VERSION>

For example, for Mojarra 2.2.11, the above path would resolve to:
WILDFLY_HOME/modules/com/sun/jsf-impl/mojarra-2.2.11

• Place the JSF implementation JAR in the <JSF_IMPL_NAME>-<JSF_VERSION> subdirectory. In the
same subdirectory, add a module.xml file similar to the Mojarra or MyFaces template examples.
Change the resource-root-path to the name of your JSF implementation JAR and fill in
appropriate values for $\{ jsf-impl-name} and $\{ jsf-version}.

Add a module slot for the new JSF API JAR

• Create the following directory structure under the WILDFLY_HOME/modules directory:
WILDFLY_HOME/modules/javax/faces/api/<JSF_IMPL_NAME>-<JSF_VERSION>

• Place the JSF API JAR in the <JSF_IMPL_NAME>-<JSF_VERSION> subdirectory. In the same
subdirectory, add a module.xml file similar to the Mojarra or MyFaces template examples.
Change the resource-root-path to the name of your JSF API JAR and fill in appropriate values for
$\{ jsf-impl-name} and $\{ jsf-version}.

Add a module slot for the JSF injection JAR

• Create the following directory structure under the WILDFLY_HOME/modules directory:
WILDFLY_HOME/modules/org/jboss/as/jsf-injection/<JSF_IMPL_NAME>-<JSF_VERSION>

• Copy the wildfly-jsf-injection JAR and the weld-core-jsf JAR from
WILDFLY_HOME/modules/system/layers/base/org/jboss/as/jsf-injection/main to the
<JSF_IMPL_NAME>-<JSF_VERSION> subdirectory.

• In the <JSF_IMPL_NAME>-<JSF_VERSION> subdirectory, add a module.xml file similar to the
Mojarra or MyFaces template examples and fill in appropriate values for $\{ jsf-impl-name}, $\{
jsf-version}, $\{ version.jboss.as}, and $\{ version.weld.core}. (These last two placeholders
depend on the versions of the wildfly-jsf-injection and weld-core-jsf JARs that were copied over
in the previous step.)

For MyFaces only - add a module for the commons-digester JAR

• Create the following directory structure under the WILDFLY_HOME/modules directory:
WILDFLY_HOME/modules/org/apache/commons/digester/main

• Place the commons-digester JAR in
WILDFLY_HOME/modules/org/apache/commons/digester/main. In the main subdirectory, add a
module.xml file similar to this template. Fill in the appropriate value for $\{ version.commons-
digester}.

191

https://github.com/wildfly/wildfly/blob/master/jsf/multi-jsf-installer/src/main/resources/mojarra-impl-module.xml
https://github.com/wildfly/wildfly/blob/master/jsf/multi-jsf-installer/src/main/resources/myfaces-impl-module.xml
https://github.com/wildfly/wildfly/blob/master/jsf/multi-jsf-installer/src/main/resources/mojarra-api-module.xml
https://github.com/wildfly/wildfly/blob/master/jsf/multi-jsf-installer/src/main/resources/myfaces-api-module.xml
https://github.com/wildfly/wildfly/blob/master/jsf/multi-jsf-installer/src/main/resources/mojarra-injection-module.xml
https://github.com/wildfly/wildfly/blob/master/jsf/multi-jsf-installer/src/main/resources/myfaces-injection-module.xml
http://search.maven.org/remotecontent?filepath=commons-digester/commons-digester/1.8/commons-digester-1.8.jar
https://github.com/wildfly/wildfly/blob/master/jsf/multi-jsf-installer/src/main/resources/myfaces-digester-module.xml

Start the server

After starting the server, the following CLI command can be used to verify that your new JSF
implementation has been installed successfully. The new JSF implementation should appear in the
output of this command.

[standalone@localhost:9990 /] /subsystem=jsf:list-active-jsf-impls()

9.12.3. Changing the default JSF implementation

The following CLI command can be used to make a newly installed JSF implementation the default
JSF implementation used by WildFly:

/subsystem=jsf/:write-attribute(name=default-jsf-impl-slot,value=<JSF_IMPL_NAME>-
<JSF_VERSION>)

A server restart will be required for this change to take effect.

9.12.4. Configuring a JSF app to use a non-default JSF implementation

A JSF app can be configured to use an installed JSF implementation that’s not the default
implementation by adding a org.jboss.jbossfaces.JSF_CONFIG_NAME context parameter to its web.xml
file. For example, to indicate that a JSF app should use MyFaces 2.2.12 (assuming MyFaces 2.2.12 has
been installed on the server), the following context parameter would need to be added:

<context-param>
 <param-name>org.jboss.jbossfaces.JSF_CONFIG_NAME</param-name>
 <param-value>myfaces-2.2.12</param-value>
</context-param>

If a JSF app does not specify this context parameter, the default JSF implementation will be used for
that app.

9.13. JMX subsystem configuration
The JMX subsystem registers a service with the Remoting endpoint so that remote access to JMX can
be obtained over the exposed Remoting connector.

This is switched on by default in standalone mode and accessible over port 9990 but in domain
mode is switched off so needs to be enabled - in domain mode the port will be the port of the
Remoting connector for the WildFly instance to be monitored.

To use the connector you can access it in the standard way using a service:jmx URL:

192

import javax.management.MBeanServerConnection;
import javax.management.remote.JMXConnector;
import javax.management.remote.JMXConnectorFactory;
import javax.management.remote.JMXServiceURL;

public class JMXExample {

 public static void main(String[] args) throws Exception {
 //Get a connection to the WildFly MBean server on localhost
 String host = "localhost";
 int port = 9990; // management-web port
 String urlString =
 System.getProperty("jmx.service.url","service:jmx:remote+http://" + host +
":" + port);
 JMXServiceURL serviceURL = new JMXServiceURL(urlString);
 JMXConnector jmxConnector = JMXConnectorFactory.connect(serviceURL, null);
 MBeanServerConnection connection = jmxConnector.getMBeanServerConnection();

 //Invoke on the WildFly MBean server
 int count = connection.getMBeanCount();
 System.out.println(count);
 jmxConnector.close();
 }
}

You also need to set your classpath when running the above example. The following script covers
Linux. If your environment is much different, paste your script when you have it working.

!/bin/bash

specify your WildFly folder +
export YOUR_JBOSS_HOME=~/WildFly

java -classpath $YOUR_JBOSS_HOME/bin/client/jboss-client.jar:./
JMXExample

You can also connect using jconsole.

If using jconsole use the jconsole.sh and jconsole.bat scripts included in the /bin
directory of the WildFly distribution as these set the classpath as required to
connect over Remoting.

In addition to the standard JVM MBeans, the WildFly MBean server contains the following MBeans:

193

JMX ObjectName Description

jboss.msc:type=container,name=jboss-as Exposes management operations on the JBoss
Modular Service Container, which is the
dependency injection framework at the heart of
WildFly. It is useful for debugging dependency
problems, for example if you are integrating
your own subsystems, as it exposes operations to
dump all services and their current states

jboss.naming:type=JNDIView Shows what is bound in JNDI

jboss.modules:type=ModuleLoader,name=* This collection of MBeans exposes management
operations on JBoss Modules classloading layer.
It is useful for debugging dependency problems
arising from missing module dependencies

9.13.1. Audit logging

Audit logging for the JMX MBean server managed by the JMX subsystem. The resource is at
/subsystem=jmx/configuration=audit-log and its attributes are similar to the ones mentioned for
/core-service=management/access=audit/logger=audit-log in Audit logging.

Attribute Description

enabled true to enable logging of the JMX operations

log-boot true to log the JMX operations when booting the
server, false otherwise

log-read-only If true all operations will be audit logged, if false
only operations that change the model will be
logged

Then which handlers are used to log the management operations are configured as handler=*
children of the logger. These handlers and their formatters are defined in the global /core-
service=management/access=audit section mentioned in Audit logging.

JSON Formatter

The same JSON Formatter is used as described in Audit logging. However the records for MBean
Server invocations have slightly different fields from those logged for the core management layer.

194

Audit_logging.html
Audit_logging.html
Audit_logging.html

2013-08-29 18:26:29 - {
 "type" : "jmx",
 "r/o" : false,
 "booting" : false,
 "version" : "10.0.0.Final",
 "user" : "$local",
 "domainUUID" : null,
 "access" : "JMX",
 "remote-address" : "127.0.0.1/127.0.0.1",
 "method" : "invoke",
 "sig" : [
 "javax.management.ObjectName",
 "java.lang.String",
 "[Ljava.lang.Object;",
 "[Ljava.lang.String;"
],
 "params" : [
 "java.lang:type=Threading",
 "getThreadInfo",
 "[Ljava.lang.Object;@5e6c33c",
 "[Ljava.lang.String;@4b681c69"
]
}

It includes an optional timestamp and then the following information in the json record

Field name Description

type This will have the value jmx meaning it comes
from the jmx subsystem

r/o true if the operation has read only impact on the
MBean(s)

booting true if the operation was executed during the
bootup process, false if it was executed once the
server is up and running

version The version number of the WildFly instance

user The username of the authenticated user.

domainUUID This is not currently populated for JMX
operations

access This can have one of the following
values:*NATIVE - The operation came in through
the native management interface, for example
the CLI*HTTP - The operation came in through
the domain HTTP interface, for example the
admin console*JMX - The operation came in
through the JMX subsystem. See JMX for how to
configure audit logging for JMX.

195

Field name Description

remote-address The address of the client executing this
operation

method The name of the called MBeanServer method

sig The signature of the called called MBeanServer
method

params The actual parameters passed in to the
MBeanServer method, a simple Object.toString()
is called on each parameter.

error If calling the MBeanServer method resulted in
an error, this field will be populated with
Throwable.getMessage()

9.14. Deployment Scanner configuration
The deployment scanner is only used in standalone mode. Its job is to monitor a directory for new
files and to deploy those files. It can be found in standalone.xml:

<subsystem xmlns="urn:jboss:domain:deployment-scanner:2.0">
 <deployment-scanner scan-interval="5000"
 relative-to="jboss.server.base.dir" path="deployments" />
</subsystem>

You can define more deployment-scanner entries to scan for deployments from more locations. The
configuration showed will scan the JBOSS_HOME/standalone/deployments directory every five seconds.
The runtime model is shown below, and uses default values for attributes not specified in the xml:

[standalone@localhost:9999 /] /subsystem=deployment-scanner:read-resource(recursive
=true)
{
 "outcome" => "success",
 "result" => {"scanner" => {"default" => {
 "auto-deploy-exploded" => false,
 "auto-deploy-zipped" => true,
 "deployment-timeout" => 60L,
 "name" => "default",
 "path" => "deployments",
 "relative-to" => "jboss.server.base.dir",
 "scan-enabled" => true,
 "scan-interval" => 5000
 }}}
}

The attributes are

196

Name Type Description

name STRING The name of the scanner.
default is used if not specified

path STRING The actual filesystem path to be
scanned. Treated as an absolute
path, unless the 'relative-to'
attribute is specified, in which
case the value is treated as
relative to that path.

relative-to STRING Reference to a filesystem path
defined in the "paths" section of
the server configuration, or one
of the system properties
specified on startup. In the
example above
jboss.server.base.dir resolves to
JBOSS_HOME/standalone

scan-enabled BOOLEAN If true scanning is enabled

scan-interval INT Periodic interval, in
milliseconds, at which the
repository should be scanned
for changes. A value of less than
1 indicates the repository
should only be scanned at
initial startup.

auto-deploy-zipped BOOLEAN Controls whether zipped
deployment content should be
automatically deployed by the
scanner without requiring the
user to add a .dodeploy marker
file.

auto-deploy-exploded BOOLEAN Controls whether exploded
deployment content should be
automatically deployed by the
scanner without requiring the
user to add a .dodeploy marker
file. Setting this to 'true' is not
recommended for anything but
basic development scenarios, as
there is no way to ensure that
deployment will not occur in
the middle of changes to the
content.

auto-deploy-xml BOOLEAN Controls whether XML content
should be automatically
deployed by the scanner
without requiring a .dodeploy
marker file.

197

Name Type Description

deployment-timeout LONG Timeout, in seconds, a
deployment is allows to execute
before being canceled. The
default is 60 seconds.

Deployment scanners can be added by modifying standalone.xml before starting up the server or
they can be added and removed at runtime using the CLI

[standalone@localhost:9990 /] /subsystem=deployment-scanner/scanner=new:add(scan-
interval=10000,relative-to="jboss.server.base.dir",path="other-deployments")
{"outcome" => "success"}
[standalone@localhost:9990 /] /subsystem=deployment-scanner/scanner=new:remove
{"outcome" => "success"}

You can also change the attributes at runtime, so for example to turn off scanning you can do

[standalone@localhost:9990 /] /subsystem=deployment-scanner/scanner=default:write-
attribute(name="scan-enabled",value=false)
{"outcome" => "success"}
[standalone@localhost:9990 /] /subsystem=deployment-scanner:read-resource(recursive
=true)
{
 "outcome" => "success",
 "result" => {"scanner" => {"default" => {
 "auto-deploy-exploded" => false,
 "auto-deploy-zipped" => true,
 "deployment-timeout" => 60L,
 "name" => "default",
 "path" => "deployments",
 "relative-to" => "jboss.server.base.dir",
 "scan-enabled" => false,
 "scan-interval" => 5000
 }}}
}

9.15. Core Management Subsystem Configuration
The core management subsystem is composed services used to manage the server or monitor its
status.
The core management subsystem configuration may be used to:

• register a listener for a server lifecycle events.

• list the last configuration changes on a server.

198

9.15.1. Lifecycle listener

You can create an implementation of
org.wildfly.extension.core.management.client.ProcessStateListener which will be notified on running
and runtime configuration state changes thus enabling the developer to react to those changes.

In order to use this feature you need to create your own module then configure and deploy it using
the core management subsystem.

For example let’s create a simple listener :

199

 public class SimpleListener implements ProcessStateListener {

 private File file;
 private FileWriter fileWriter;
 private ProcessStateListenerInitParameters parameters;

 @Override
 public void init(ProcessStateListenerInitParameters parameters) {
 this.parameters = parameters;
 this.file = new File(parameters.getInitProperties().get("file"));
 try {
 fileWriter = new FileWriter(file, true);
 } catch (IOException e) {
 e.printStackTrace();
 }
 }

 @Override
 public void cleanup() {
 try {
 fileWriter.close();
 } catch (IOException e) {
 e.printStackTrace();
 } finally {
 fileWriter = null;
 }
 }

 @Override
 public void runtimeConfigurationStateChanged(RuntimeConfigurationStateChangeEvent
evt) {
 try {
 fileWriter.write(String.format("%s %s %s %s\n", parameters.getProcessType
(), parameters.getRunningMode(), evt.getOldState(), evt.getNewState()));
 } catch (IOException e) {
 e.printStackTrace();
 }
 }

 @Override
 public void runningStateChanged(RunningStateChangeEvent evt) {
 try {
 fileWriter.write(String.format("%s %s %s %s\n", parameters.getProcessType
(), parameters.getRunningMode(), evt.getOldState(), evt.getNewState()));
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

200

To compile it you need to depend on the org.wildfly.core:wildfly-core-management-client maven
module. Now let’s add the module to the wildfly modules :

module add --name=org.simple.lifecycle.events.listener
--dependencies=org.wildfly.extension.core-management-client
--resources=/home/ehsavoie/dev/demo/simple-listener/target/simple-process-state
-listener.jar

Now we can register or listener :

/subsystem=core-management/process-state-listener=simple-
listener:add(class=org.simple.lifecycle.events.listener.SimpleListener,
module=org.simple.lifecycle.events.listener,
properties={file=/home/wildfly/tmp/events.txt})

9.15.2. Configuration changes

You can use the core management subsystem to enable and configure an in-memory history of the
last configuration changes.
For example to track the last 5 configuration changes let’s active this :

/subsystem=core-management/service=configuration-changes:add(max-history=5)

Now we can list the last configuration changes :

201

/subsystem=core-management/service=configuration-changes:list-changes()
{
 "outcome" => "success",
 "result" => [{
 "operation-date" => "2016-12-05T11:05:12.867Z",
 "access-mechanism" => "NATIVE",
 "remote-address" => "/127.0.0.1",
 "outcome" => "success",
 "operations" => [{
 "address" => [
 ("subsystem" => "core-management"),
 ("service" => "configuration-changes")
],
 "operation" => "add",
 "max-history" => 5,
 "operation-headers" => {
 "caller-type" => "user",
 "access-mechanism" => "NATIVE"
 }
 }]
 }]
}

9.16. Simple configuration subsystems
The following subsystems currently have no configuration beyond its root element in the
configuration

<subsystem xmlns="urn:jboss:domain:jaxrs:1.0"/>
<subsystem xmlns="urn:jboss:domain:jdr:1.0"/>
<subsystem xmlns="urn:jboss:domain:pojo:1.0"/>
<subsystem xmlns="urn:jboss:domain:sar:1.0"/>

The presence of each of these turns on a piece of functionality:

Name Description

jaxrs Enables the deployment and functionality of
JAX-RS applications

jdr Enables the gathering of diagnostic data for use
in remote analysis of error conditions. Although
the data is in a simple format and could be
useful to anyone, primarily useful for JBoss EAP
subscribers who would provide the data to Red
Hat when requesting support

202

Name Description

pojo Enables the deployment of applications
containing JBoss Microcontainer services, as
supported by previous versions of JBoss
Application Server

sar Enables the deployment of .SAR archives
containing MBean services, as supported by
previous versions of JBoss Application Server

203

Chapter 10. Domain Setup
To run a group of servers as a managed domain you need to configure both the domain controller
and each host that joins the domain. This sections focuses on the network configuration for the
domain and host controller components. For background information users are encouraged to
review the Operating modes and Configuration Files sections.

10.1. Domain Controller Configuration
The domain controller is the central government for a managed domain. A domain controller
configuration requires two steps:

• A host needs to be configured to act as the Domain Controller for the whole domain

• The host must expose an addressable management interface binding for the managed hosts to
communicate with it

Example IP Addresses

In this example the domain controller uses 192.168.0.101 and the host controller
192.168.0.10

Configuring a host to act as the Domain Controller is done through the domain-controller
declaration in host.xml. If it includes the <local/> element, then this host will become the domain
controller:

<domain-controller>
 <local/>
</domain-controller>

~(See domain/configuration/host.xml)~

A host acting as the Domain Controller must expose a management interface on an address
accessible to the other hosts in the domain. Exposing an HTTP(S) management interface is not
required, but is recommended as it allows the Administration Console to work:

<management-interfaces>
 <native-interface security-realm="ManagementRealm">
 <socket interface="management" port="${jboss.management.native.port:9999}"/>
 </native-interface>
 <http-interface security-realm="ManagementRealm">
 <socket interface="management" port="${jboss.management.http.port:9990}"/>
 </http-interface>
</management-interfaces>

The interface attributes above refer to a named interface declaration later in the host.xml file. This
interface declaration will be used to resolve a corresponding network interface.

204

Operating_modes.adoc
Management_Clients.html#src-557081_ManagementClients-ConfigurationFiles

<interfaces>
 <interface name="management">
 <inet-address value="192.168.0.101"/>
 </interface>
</interfaces>

~(See domain/configuration/host.xml)~

Please consult the chapter "Interface Configuration" for a more detailed explanation on how to
configure network interfaces.

Next by default the master domain controller is configured to require authentication so a user
needs to be added that can be used by the slave domain controller to connect.

Make use of the add-user utility to add a new user, for this example I am adding a new user called
slave.

 add-user MUST be run on the master domain controller and NOT the slave.

When you reach the final question of the interactive flow answer y or yes to indicate that the new
user will be used for a process e.g.

Is this new user going to be used for one AS process to connect to another AS process
e.g. slave domain controller?
yes/no? y
To represent the user add the following to the server-identities definition <secret
value="cE3EBEkE=" />

Make a note of the XML Element output as that is going to be required within the slave
configuration.

10.2. Host Controller Configuration
Once the domain controller is configured correctly you can proceed with any host that should join
the domain. The host controller configuration requires three steps:

• The logical host name (within the domain) needs to be distinct

• The host controller needs to know the domain controller IP address

Provide a distinct, logical name for the host. In the following example we simply name it "slave":

<host xmlns="urn:jboss:domain:3.0"
 name="slave">
[...]
</host>

205

~(See domain/configuration/host.xml)~

If the name attribute is not set, the default name for the host will be the value of the jboss.host.name
system property. If that is not set, the value of the HOSTNAME or COMPUTERNAME environment variable
will be used, one of which will be set on most operating systems. If neither is set the name will be
the value of InetAddress.getLocalHost().getHostName().

A security realm needs to be defined to hold the identity of the slave. Since it is performing a
specific purpose I would suggest a new realm is defined although it is possible to combine this with
an existing realm.

<security-realm name="SlaveRealm">
 <server-identities>
 <secret value="cE3EBEkE=" />
 </server-identities>
</security-realm>

The <secret /> element here is the one output from add-user previously. To create the <secret />
element yourself the value needs to be the password encoded using Base64.

Tell it how to find the domain controller so it can register itself with the domain:

<domain-controller>
 <remote protocol="remote" host="192.168.0.101" port="9999" username="slave"
security-realm="SlaveRealm"/>
</domain-controller>

Since we have also exposed the HTTP management interface we could also use :

<domain-controller>
 <remote protocol="http-remoting" host="192.168.0.101" port="9990" username="slave"
security-realm="SlaveRealm"/>
</domain-controller>

~(See domain/configuration/host.xml)~

The username attribute here is optional, if it is omitted then the name of the host will be used
instead, in this example that was already set to name.

The name of each host needs to be unique when registering with the domain
controller, however the username does not - using the username attribute allows
the same account to be used by multiple hosts if this makes sense in your
environment.

The <remote /> element is also associated with the security realm SlaveRealm, this is how it picks up
the password from the <secret /> element.

206

10.2.1. Ignoring domain wide resources

WildFly 10 and later make it easy for slave host controllers to "ignore" parts of the domain wide
configuration. What does the mean and why is it useful?

One of the responsibilities of the Domain Controller is ensuring that all running Host Controllers
have a consistent local copy of the domain wide configuration (i.e. those resources whose address
does not begin with /host=*, i.e. those that are persisted in domain.xml. Having that local copy allows
a user to do the following things:

• Ask the slave to launch its already configured servers, even if the Domain Controller is not
running.

• Configured new servers, using different server groups from those current running, and ask the
slave to launch them, even if the Domain Controller is not running.

• Reconfigure the slave to act as the Domain Controller, allowing it to take over as the master if
the previous master has failed or been shut down.

However, of these three things only the latter two require that the slave maintain a complete copy
of the domain wide configuration. The first only requires the slave to have the portion of the
domain wide configuration that is relevant to its current servers. And the first use case is the most
common one. A slave that is only meant to support the first use case can safely "ignore" portions of
the domain wide configuration. And there are benefits to ignoring some resources:

• If a server group is ignored, and the deployments mapped to that server group aren’t mapped to
other non-ignored groups, then the slave does not need to pull down a copy of the deployment
content from the master. That can save disk space on the slave, improve the speed of starting
new hosts and reduce network traffic.

• WildFly supports "mixed domains" where a later version Domain Controller can manage slaves
running previous versions. But those "legacy" slaves cannot understand configuration
resources, attributes and operations introduced in newer versions. So any attempt to use newer
things in the domain wide configuration will fail unless the legacy slaves are ignoring the
relevant resources. But ignoring resources will allow the legacy slaves to work fine managing
servers using profiles without new concepts, while other hosts can run servers with profiles
that take advantage of the latest features.

Prior to WildFly 10, a slave could be configured to ignore some resources, but the mechanism was
not particularly user friendly:

• The resources to be ignored had to be listed in a fair amount of detail in each host’s
configuration.

• If a new resource is added and needs to be ignored, then each host that needs to ignore that
must be updated to record that.

Starting with WildFly 10, this kind of detailed configuration is no longer required. Instead, with the
standard versions of host.xml, the slave will behave as follows:

• If the slave was started with the --backup command line parameter, the behavior will be the
same as releases prior to 10; i.e. only resources specifically configured to be ignored will be

207

ignored.

• Otherwise, the slave will "ignore unused resources".

What does "ignoring unused resources" mean?

• Any server-group that is not referenced by one of the host’s server-config resources is ignored.

• Any profile that is not referenced by a non-ignored server-group, either directly or indirectly
via the profile resource’s 'include' attribute, is ignored

• Any socket-binding-group that is not directly referenced by one of the host’s server-config
resources, or referenced by a non-ignored server-group, is ignored

• Extension resources will not be automatically ignored, even if no non-ignored profile uses the
extension. Ignoring an extension requires explicit configuration. Perhaps in a future release
extensions will be explicitly ignored.

• If a change is made to the slave host’s configuration or to the domain wide configuration that
reduces the set of ignored resources, then as part of handling that change the slave will contact
the master to pull down the missing pieces of configuration and will integrate those pieces in its
local copy of the management model. Examples of such changes include adding a new server-
config that references a previously ignored server-group or socket-binding-group, changing the
server-group or socket-binding-group assigned to a server-config, changing the profile or socket-
binding-group assigned to a non-ignored server-group, or adding a profile or socket-binding-
group to the set of those included directly or indirectly by a non-ignored profile or socket-
binding-group.

The default behavior can be changed, either to always ignore unused resources, even if --backup is
used, or to not ignore unused resources, by updating the domain-controller element in the host-xml
file and setting the ignore-unused-configuration attribute:

<domain-controller>
 <remote security-realm="ManagementRealm" ignore-unused-configuration="false">
 <discovery-options>
 <static-discovery name="primary" protocol=
"${jboss.domain.master.protocol:remote}" host="${jboss.domain.master.address}" port=
"${jboss.domain.master.port:9999}"/>
 </discovery-options>
 </remote>
</domain-controller>

The "ignore unused resources" behavior can be used in combination with the pre-WildFly 10
detailed specification of what to ignore. If that is done both the unused resources and the explicitly
declared resources will be ignored. Here’s an example of such a configuration, one where the slave
cannot use the "org.example.foo" extension that has been installed on the Domain Controller and
on some slaves, but not this one:

208

<domain-controller>
 <ignored-resources type="extension">
 <instance name="org.example.foo"/>
 </ignored-resources>
 <remote security-realm="ManagementRealm" ignore-unused-configuration="true">
 <discovery-options>
 <static-discovery name="primary" protocol=
"${jboss.domain.master.protocol:remote}" host="${jboss.domain.master.address}" port=
"${jboss.domain.master.port:9999}"/>
 </discovery-options>
 </remote>
</domain-controller>

10.3. Server groups
The domain controller defines one or more server groups and associates each of these with a
profile and a socket binding group, and also :

<server-groups>
 <server-group name="main-server-group" profile="default">
 <jvm name="default">
 <heap size="64m" max-size="512m"/>
 <permgen size="128m" max-size="128m"/>
 </jvm>
 <socket-binding-group ref="standard-sockets"/>
 </server-group>
 <server-group name="other-server-group" profile="bigger">
 <jvm name="default">
 <heap size="64m" max-size="512m"/>
 </jvm>
 <socket-binding-group ref="bigger-sockets"/>
 </server-group>
</server-groups>

~(See domain/configuration/domain.xml)~

The domain controller also defines the socket binding groups and the profiles. The socket binding
groups define the default socket bindings that are used:

209

<socket-binding-groups>
 <socket-binding-group name="standard-sockets" default-interface="public">
 <socket-binding name="http" port="8080"/>
 [...]
 </socket-binding-group>
 <socket-binding-group name="bigger-sockets" include="standard-sockets" default-
interface="public">
 <socket-binding name="unique-to-bigger" port="8123"/>
 </socket-binding-group>
</socket-binding-groups>

~(See domain/configuration/domain.xml)~
In this example the bigger-sockets group includes all the socket bindings defined in the standard-
sockets groups and then defines an extra socket binding of its own.

A profile is a collection of subsystems, and these subsystems are what implement the functionality
people expect of an application server.

<profiles>
 <profile name="default">
 <subsystem xmlns="urn:jboss:domain:web:1.0">
 <connector name="http" scheme="http" protocol="HTTP/1.1" socket-binding=
"http"/>
 [...]
 </subsystem>
 <\!-\- The rest of the subsystems here \-->
 [...]
 </profile>
 <profile name="bigger">
 <subsystem xmlns="urn:jboss:domain:web:1.0">
 <connector name="http" scheme="http" protocol="HTTP/1.1" socket-binding=
"http"/>
 [...]
 </subsystem>
 <\!-\- The same subsystems as defined by 'default' here \-->
 [...]
 <subsystem xmlns="urn:jboss:domain:fictional-example:1.0">
 <socket-to-use name="unique-to-bigger"/>
 </subsystem>
 </profile>
</profiles>

~(See domain/configuration/domain.xml)~
Here we have two profiles. The bigger profile contains all the same subsystems as the default
profile (athough the parameters for the various subsystems could be different in each profile), and
adds the fictional-example subsystem which references the unique-to-bigger socket binding.

210

10.4. Servers
The host controller defines one or more servers:

<servers>
 <server name="server-one" group="main-server-group">
 <\!-\- server-one inherits the default socket-group declared in the server-
group \-->
 <jvm name="default"/>
 </server>

 <server name="server-two" group="main-server-group" auto-start="true">
 <socket-binding-group ref="standard-sockets" port-offset="150"/>
 <jvm name="default">
 <heap size="64m" max-size="256m"/>
 </jvm>
 </server>

 <server name="server-three" group="other-server-group" auto-start="false">
 <socket-binding-group ref="bigger-sockets" port-offset="250"/>
 </server>
</servers>

~(See domain/configuration/host.xml)~

server-one and server-two both are associated with main-server-group so that means they both run
the subsystems defined by the default profile, and have the socket bindings defined by the
standard-sockets socket binding group. Since all the servers defined by a host will be run on the
same physical host we would get port conflicts unless we used <socket-binding-group

ref="standard-sockets" port-offset="150"/> for server-two. This means that server-two will use the
socket bindings defined by standard-sockets but it will add 150 to each port number defined, so the
value used for http will be 8230 for server-two.

server-three will not be started due to its auto-start="false". The default value if no auto-start is
given is true so both server-one and server-two will be started when the host controller is started.
server-three belongs to other-server-group, so if its auto-start were changed to true it would start
up using the subsystems from the bigger profile, and it would use the bigger-sockets socket binding
group.

10.4.1. JVM

The host controller contains the main jvm definitions with arguments:

211

<jvms>
 <jvm name="default">
 <heap size="64m" max-size="128m"/>
 </jvm>
</jvms>

~(See domain/configuration/host.xml)~
From the preceeding examples we can see that we also had a jvm reference at server group level in
the domain controller. The jvm’s name must match one of the definitions in the host controller. The
values supplied at domain controller and host controller level are combined, with the host
controller taking precedence if the same parameter is given in both places.

Finally, as seen, we can also override the jvm at server level. Again, the jvm’s name must match one
of the definitions in the host controller. The values are combined with the ones coming in from
domain controller and host controller level, this time the server definition takes precedence if the
same parameter is given in all places.

Following these rules the jvm parameters to start each server would be

Server JVM parameters

server-one -Xms64m -Xmx128m

server-two -Xms64m -Xmx256m

server-three -Xms64m -Xmx128m

212

Chapter 11. Management tasks

11.1. Command line parameters
To start up a WildFly managed domain, execute the $JBOSS_HOME/bin/domain.sh script. To start up a
standalone server, execute the $JBOSS_HOME/bin/standalone.sh. With no arguments, the default
configuration is used. You can override the default configuration by providing arguments on the
command line, or in your calling script.

11.1.1. System properties

To set a system property, pass its new value using the standard jvm -Dkey=value options:

$JBOSS_HOME/bin/standalone.sh -Djboss.home.dir=some/location/wildFly \
 -Djboss.server.config.dir=some/location/wildFly/custom-standalone

This command starts up a standalone server instance using a non-standard AS home directory and
a custom configuration directory. For specific information about system properties, refer to the
definitions below.

Instead of passing the parameters directly, you can put them into a properties file, and pass the
properties file to the script, as in the two examples below.

$JBOSS_HOME/bin/domain.sh --properties=/some/location/jboss.properties
$JBOSS_HOME/bin/domain.sh -P=/some/location/jboss.properties

Note however, that properties set this way are not processed as part of JVM launch. They are
processed early in the boot process, but this mechanism should not be used for setting properties
that control JVM behavior (e.g. java.net.perferIPv4Stack) or the behavior of the JBoss Modules
classloading system.

The syntax for passing in parameters and properties files is the same regardless of whether you are
running the domain.sh, standalone.sh, or the Microsoft Windows scripts domain.bat or
standalone.bat.

The properties file is a standard Java property file containing key=value pairs:

jboss.home.dir=/some/location/wildFly
jboss.domain.config.dir=/some/location/wildFly/custom-domain

System properties can also be set via the xml configuration files. Note however that for a
standalone server properties set this way will not be set until the xml configuration is parsed and
the commands created by the parser have been executed. So this mechanism should not be used for
setting properties whose value needs to be set before this point.

213

Controlling filesystem locations with system properties

The standalone and the managed domain modes each use a default configuration which expects
various files and writable directories to exist in standard locations. Each of these standard locations
is associated with a system property, which has a default value. To override a system property, pass
its new value using the one of the mechanisms above. The locations which can be controlled via
system property are:

Standalone

Property name Usage Default value

java.ext.dirs The JDK extension directory
paths

null

jboss.home.dir The root directory of the
WildFly installation.

Set by standalone.sh to
$JBOSS_HOME

jboss.server.base.dir The base directory for server
content.

jboss.home.dir/standalone

jboss.server.config.dir The base configuration
directory.

jboss.server.base.dir/configurati
on

jboss.server.data.dir The directory used for
persistent data file storage.

jboss.server.base.dir/data

jboss.server.log.dir The directory containing the
server.log file.

jboss.server.base.dir/log

jboss.server.temp.dir The directory used for
temporary file storage.

jboss.server.base.dir/tmp

jboss.server.deploy.dir The directory used to store
deployed content

jboss.server.data.dir/content

Managed Domain

Property name Usage Default value

jboss.home.dir The root directory of the
WildFly installation.

Set by domain.sh to
$JBOSS_HOME

jboss.domain.base.dir The base directory for domain
content.

jboss.home.dir/domain

jboss.domain.config.dir The base configuration
directory

jboss.domain.base.dir/configura
tion

jboss.domain.data.dir The directory used for
persistent data file storage.

jboss.domain.base.dir/data

jboss.domain.log.dir The directory containing the
host-controller.log and process-
controller.log files

jboss.domain.base.dir/log

jboss.domain.temp.dir The directory used for
temporary file storage

jboss.domain.base.dir/tmp

jboss.domain.deployment.dir The directory used to store
deployed content

jboss.domain.base.dir/content

214

Property name Usage Default value

jboss.domain.servers.dir The directory containing the
output for the managed server
instances

jboss.domain.base.dir/servers

11.1.2. Other command line parameters

The first acceptable format for command line arguments to the WildFly launch scripts is

--name=value

For example:

$JBOSS_HOME/bin/standalone.sh --server-config=standalone-ha.xml

If the parameter name is a single character, it is prefixed by a single '-' instead of two. Some
parameters have both a long and short option.

-x=value

For example:

$JBOSS_HOME/bin/standalone.sh -P=/some/location/jboss.properties

For some command line arguments frequently used in previous major releases of WildFly,
replacing the "=" in the above examples with a space is supported, for compatibility.

-b 192.168.100.10

If possible, use the -x=value syntax. New parameters will always support this syntax.

The sections below describe the command line parameter names that are available in standalone
and domain mode.

Standalone

Name Default if absent Value

--admin-only - Set the server’s running type to
ADMIN_ONLY causing it to open
administrative interfaces and
accept management requests
but not start other runtime
services oraccept end user
requests.

215

Name Default if absent Value

--server-config-c standalone.xml A relative path which is
interpreted to be relative to
jboss.server.config.dir. The
name of the configuration file
to use.

--read-only-server-config - A relative path which is
interpreted to be relative to
jboss.server.config.dir. This is
similar to --server-config but if
this alternative is specified the
server willnot overwrite the file
when the management model is
changed. However a full
versioned history is maintained
of the file.

Managed Domain

Name Default if absent Value

--admin-only - Set the server’s running type to
ADMIN_ONLY causing it to open
administrative interfaces and
accept management requests
but not start servers or, if this
host controlleris the master for
the domain, accept incoming
connections from slave host
controllers.

--domain-config-c domain.xml A relative path which is
interpreted to be relative to
jboss.domain.config.dir. The
name of the domain wide
configuration file to use.

--read-only-domain-config - A relative path which is
interpreted to be relative to
jboss.domain.config.dir. This is
similar to --domain-config but if
this alternative is specified the
host controllerwill not
overwrite the file when the
management model is changed.
However a full versioned
history is maintained of the file.

--host-config host.xml A relative path which is
interpreted to be relative to
jboss.domain.config.dir. The
name of the host-specific
configuration file to use.

216

Name Default if absent Value

--read-only-host-config - A relative path which is
interpreted to be relative to
jboss.domain.config.dir. This is
similar to --host-config but if
this alternative is specified the
host controller willnot
overwrite the file when the
management model is changed.
However a full versioned
history is maintained of the file.

The following parameters take no value and are only usable on slave host controllers (i.e. hosts
configured to connect to a remote domain controller.)

Name Function

--backup Causes the slave host controller to create and
maintain a local copy (domain.cached-
remote.xml) of the domain configuration. If
ignore-unused-configuration is unset in
host.xml,a complete copy of the domain
configuration will be stored locally, otherwise
the configured value of ignore-unused-
configuration in host.xml will be used. (See
ignore-unused-configuration for more details.)

--cached-dc If the slave host controller is unable to contact
the master domain controller to get its
configuration at boot, this option will allow the
slave host controller to boot and
becomeoperational using a previously cached
copy of the domain configuration
(domain.cached-remote.xml.) If the cached
configuration is not present, this boot will fail.
This file is created using using one ofthe
following methods:- A previously successful
connection to the master domain controller
using --backup or --cached-dc.- Copying the
domain configuration from an alternative host
to domain/configuration/domain.cached-
remote.xml.The unavailable master domain
controller will be polled periodically for
availability, and once becoming available, the
slave host controller will reconnect to the
master host controller and synchronize the
domainconfiguration. During the interval the
master domain controller is unavailable, the
slave host controller will not be able make any
modifications to the domain configuration, but it
may launch servers and handlerequests to
deployed applications etc.

217

Common parameters

These parameters apply in both standalone or managed domain mode:

Name Function

-b=<value> Sets system property jboss.bind.address to
<value>. See Controlling the Bind Address with
-b for further details.

-b<name>=<value> Sets system property jboss.bind.address.<name>
to <value> where name can vary. See Controlling
the Bind Address with -b for further details.

-u=<value> Sets system property
jboss.default.multicast.address to <value>. See
Controlling the Default Multicast Address with -u
for further details.

--version-v-V Prints the version of WildFly to standard output
and exits the JVM.

--help-h Prints a help message explaining the options and
exits the JVM.

11.1.3. Controlling the Bind Address with -b

WildFly binds sockets to the IP addresses and interfaces contained in the <interfaces> elements in
standalone.xml, domain.xml and host.xml. (See Interfaces and Socket Bindings for further
information on these elements.) The standard configurations that ship with WildFly includes two
interface configurations:

<interfaces>
 <interface name="management">
 <inet-address value="${jboss.bind.address.management:127.0.0.1}"/>
 </interface>
 <interface name="public">
 <inet-address value="${jboss.bind.address:127.0.0.1}"/>
 </interface>
</interfaces>

Those configurations use the values of system properties jboss.bind.address.management and
jboss.bind.address if they are set. If they are not set, 127.0.0.1 is used for each value.

As noted in Common Parameters, the AS supports the -b and -b<name> command line switches. The
only function of these switches is to set system properties jboss.bind.address and
jboss.bind.address.<name> respectively. However, because of the way the standard WildFly
configuration files are set up, using the -b switches can indirectly control how the AS binds sockets.

If your interface configurations match those shown above, using this as your launch command

218

General_configuration_concepts.html#src-557065_Generalconfigurationconcepts-interfaces
General_configuration_concepts.html#src-557065_Generalconfigurationconcepts-socket-bindings
#src-557062_Commandlineparameters-common-parameters

causes all sockets associated with interface named "public" to be bound to 192.168.100.10.

$JBOSS_HOME/bin/standalone.sh -b=192.168.100.10

In the standard config files, public interfaces are those not associated with server management.
Public interfaces handle normal end-user requests.

Interface names

The interface named "public" is not inherently special. It is provided as a
convenience. You can name your interfaces to suit your environment.

To bind the public interfaces to all IPv4 addresses (the IPv4 wildcard address), use the following
syntax:

$JBOSS_HOME/bin/standalone.sh -b=0.0.0.0

You can also bind the management interfaces, as follows:

$JBOSS_HOME/bin/standalone.sh -bmanagement=192.168.100.10

In the standard config files, management interfaces are those sockets associated with server
management, such as the socket used by the CLI, the HTTP socket used by the admin console, and
the JMX connector socket.

Be Careful

The -b switch only controls the interface bindings because the standard config files
that ship with WildFly sets things up that way. If you change the <interfaces>
section in your configuration to no longer use the system properties controlled by
-b, then setting -b in your launch command will have no effect.

For example, this perfectly valid setting for the "public" interface causes -b to have no effect on the
"public" interface:

<interface name="public">
 <nic name="eth0"/>
</interface>

The key point is the contents of the configuration files determine the configuration. Settings
like -b are not overrides of the configuration files. They only provide a shorter syntax for setting
a system properties that may or may not be referenced in the configuration files. They are provided
as a convenience, and you can choose to modify your configuration to ignore them.

219

11.1.4. Controlling the Default Multicast Address with -u

WildFly may use multicast communication for some services, particularly those involving high
availability clustering. The multicast addresses and ports used are configured using the socket-
binding elements in standalone.xml and domain.xml. (See Socket Bindings for further information on
these elements.) The standard HA configurations that ship with WildFly include two socket binding
configurations that use a default multicast address:

<socket-binding name="jgroups-mping" port="0" multicast-address=
"${jboss.default.multicast.address:230.0.0.4}" multicast-port="45700"/>
<socket-binding name="jgroups-udp" port="55200" multicast-address=
"${jboss.default.multicast.address:230.0.0.4}" multicast-port="45688"/>

Those configurations use the values of system property jboss.default.multicast.address if it is set.
If it is not set, 230.0.0.4 is used for each value. (The configuration may include other socket
bindings for multicast-based services that are not meant to use the default multicast address; e.g. a
binding the mod-cluster services use to communicate on a separate address/port with Apache httpd
servers.)

As noted in Common Parameters, the AS supports the -u command line switch. The only function of
this switch is to set system property jboss.default.multicast.address. However, because of the way
the standard AS configuration files are set up, using the -u switches can indirectly control how the
AS uses multicast.

If your socket binding configurations match those shown above, using this as your launch command
causes the service using those sockets configurations to be communicate over multicast address
230.0.1.2.

$JBOSS_HOME/bin/standalone.sh -u=230.0.1.2

Be Careful

As with the -b switch, the -u switch only controls the multicast address used
because the standard config files that ship with WildFly sets things up that way. If
you change the <socket-binding> sections in your configuration to no longer use
the system properties controlled by -u, then setting -u in your launch command
will have no effect.

Unresolved directive in admin-guide/Management_tasks.adoc - include::management-
tasks/Suspend,_resume_and_graceful_shutdown.adoc[]

11.2. Starting & stopping Servers in a Managed Domain
Starting a standalone server is done through the bin/standalone.sh script. However in a managed
domain server instances are managed by the domain controller and need to be started through the
management layer:

220

General_configuration_concepts.html#src-557065_Generalconfigurationconcepts-socket-bindings
#common-parameters

First of all, get to know which servers are configured on a particular host:

[domain@localhost:9990 /] :read-children-names(child-type=host)
{
 "outcome" => "success",
 "result" => ["local"]
}

[domain@localhost:9990 /] /host=local:read-children-names(child-type=server-config)
{
 "outcome" => "success",
 "result" => [
 "my-server",
 "server-one",
 "server-three"
]
}

Now that we know, that there are two servers configured on host " local", we can go ahead and
check their status:

[domain@localhost:9990 /] /host=local/server-config=server-one:read-resource(include-
runtime=true)
{
 "outcome" => "success",
 "result" => {
 "auto-start" => true,
 "group" => "main-server-group",
 "interface" => undefined,
 "name" => "server-one",
 "path" => undefined,
 "socket-binding-group" => undefined,
 "socket-binding-port-offset" => undefined,
 "status" => "STARTED",
 "system-property" => undefined,
 "jvm" => {"default" => undefined}
 }
}

You can change the server state through the " start" and " stop" operations

[domain@localhost:9990 /] /host=local/server-config=server-one:stop
{
 "outcome" => "success",
 "result" => "STOPPING"
}

221

Navigating through the domain topology is much more simple when you use the
web interface.

11.3. JVM settings
Configuration of the JVM settings is different for a managed domain and a standalone server. In a
managed domain, the domain controller components are responsible for starting and stoping
server processes and hence determine the JVM settings. For a standalone server, it’s the
responsibility of the process that started the server (e.g. passing them as command line arguments).

11.3.1. Managed Domain

In a managed domain the JVM settings can be declared at different scopes: For a specific server
group, for a host or for a particular server. If not declared, the settings are inherited from the
parent scope. This allows you to customize or extend the JVM settings within every layer.

Let’s take a look at the JVM declaration for a server group:

<server-groups>
 <server-group name="main-server-group" profile="default">
 <jvm name="default">
 <heap size="64m" max-size="512m"/>
 </jvm>
 <socket-binding-group ref="standard-sockets"/>
 </server-group>
 <server-group name="other-server-group" profile="default">
 <jvm name="default">
 <heap size="64m" max-size="512m"/>
 </jvm>
 <socket-binding-group ref="standard-sockets"/>
 </server-group>
</server-groups>

(See domain/configuration/domain.xml)

In this example the server group "main-server-group" declares a heap size of 64m and a maximum
heap size of 512m. Any server that belongs to this group will inherit these settings. You can change
these settings for the group as a whole, or a specific server or host:

222

<servers>
 <server name="server-one" group="main-server-group" auto-start="true">
 <jvm name="default"/>
 </server>
 <server name="server-two" group="main-server-group" auto-start="true">
 <jvm name="default">
 <heap size="64m" max-size="256m"/>
 </jvm>
 <socket-binding-group ref="standard-sockets" port-offset="150"/>
 </server>
 <server name="server-three" group="other-server-group" auto-start="false">
 <socket-binding-group ref="standard-sockets" port-offset="250"/>
 </server>
</servers>

~(See domain/configuration/host.xml)~

In this case, server-two, belongs to the main-server-group and inherits the JVM settings named
default, but declares a lower maximum heap size.

[domain@localhost:9999 /] /host=local/server-config=server-two/jvm=default:read-
resource
{
 "outcome" => "success",
 "result" => {
 "heap-size" => "64m",
 "max-heap-size" => "256m",
 }
}

11.3.2. Standalone Server

For a standalone sever you have to pass in the JVM settings either as command line arguments
when executing the $JBOSS_HOME/bin/standalone.sh script, or by declaring them in
$JBOSS_HOME/bin/standalone.conf. (For Windows users, the script to execute is
%JBOSS_HOME%/bin/standalone.bat while the JVM settings can be declared in
%JBOSS_HOME%/bin/standalone.conf.bat.)

11.4. Audit logging
WildFly comes with audit logging built in for management operations affecting the management
model. By default it is turned off. The information is output as JSON records.

The default configuration of audit logging in standalone.xml looks as follows:

223

 <management>
 <security-realms>
...
 </security-realms>
 <audit-log>
 <formatters>
 <json-formatter name="json-formatter"/>
 </formatters>
 <handlers>
 <file-handler name="file" formatter="json-formatter" path="audit-
log.log" relative-to="jboss.server.data.dir"/>
 </handlers>
 <logger log-boot="true" log-read-only="true" enabled="false">
 <handlers>
 <handler name="file"/>
 </handlers>
 </logger>
 </audit-log>
...

Looking at this via the CLI it looks like

224

[standalone@localhost:9990 /] /core-service=management/access=audit:read-resource
(recursive=true)
{
 "outcome" => "success",
 "result" => {
 "file-handler" => {"file" => {
 "formatter" => "json-formatter",
 "max-failure-count" => 10,
 "path" => "audit-log.log",
 "relative-to" => "jboss.server.data.dir"
 }},
 "json-formatter" => {"json-formatter" => {
 "compact" => false,
 "date-format" => "yyyy-MM-dd HH:mm:ss",
 "date-separator" => " - ",
 "escape-control-characters" => false,
 "escape-new-line" => false,
 "include-date" => true
 }},
 "logger" => {"audit-log" => {
 "enabled" => false,
 "log-boot" => true,
 "log-read-only" => false,
 "handler" => {"file" => {}}
 }},
 "syslog-handler" => undefined
 }
}

To enable it via CLI you need just

[standalone@localhost:9990 /] /core-service=management/access=audit/logger=audit-log
:write-attribute(name=enabled,value=true)
{"outcome" => "success"}

Audit data are stored in standalone/data/audit-log.log.

The audit logging subsystem has a lot of internal dependencies, and it logs
operations changing, enabling and disabling its components. When configuring or
changing things at runtime it is a good idea to make these changes as part of a CLI
batch. For example if you are adding a syslog handler you need to add the handler
and its information as one step. Similarly if you are using a file handler, and want
to change its path and relative-to attributes, that needs to happen as one step.

11.4.1. JSON Formatter

The first thing that needs configuring is the formatter, we currently support outputting log records

225

as JSON. You can define several formatters, for use with different handlers. A log record has the
following format, and it is the formatter’s job to format the data presented:

2013-08-12 11:01:12 - {
 "type" : "core",
 "r/o" : false,
 "booting" : false,
 "version" : "8.0.0.Alpha4",
 "user" : "$local",
 "domainUUID" : null,
 "access" : "NATIVE",
 "remote-address" : "127.0.0.1/127.0.0.1",
 "success" : true,
 "ops" : [JMX|WFLY8:JMX subsystem configuration],
 "operation" : "write-attribute",
 "name" : "enabled",
 "value" : true,
 "operation-headers" : {"caller-type" : "user"}
 }]
}

It includes an optional timestamp and then the following information in the json record

Field name Description

type This can have the values core, meaning it is a
management operation, or jmx meaning it
comes from the jmx subsystem (see the jmx
subsystem for configuration of the jmx
subsystem’s audit logging)

r/o true if the operation does not change the
management model, false otherwise

booting true if the operation was executed during the
bootup process, false if it was executed once the
server is up and running

version The version number of the WildFly instance

user The username of the authenticated user. In this
case the operation has been logged via the CLI
on the same machine as the running server, so
the special $local user is used

domainUUID An ID to link together all operations as they are
propagated from the Doman Controller to it
servers, slave Host Controllers, and slave Host
Controller servers

226

Field name Description

access This can have one of the following
values:*NATIVE - The operation came in through
the native management interface, for example
the CLI*HTTP - The operation came in through
the domain HTTP interface, for example the
admin console*JMX - The operation came in
through the JMX subsystem. See JMX for how to
configure audit logging for JMX.

remote-address The address of the client executing this
operation

success true if the operation succeeded, false if it was
rolled back

ops The operations being executed. This is a list of
the operations serialized to JSON. At boot this
will be all the operations resulting from parsing
the xml. Once booted the list will typically just
contain a single entry

The json formatter resource has the following attributes:

Attribute Description

include-date Boolan toggling whether or not to include the
timestamp in the formatted log records

date-separator A string containing characters to separate the
date and the rest of the formatted log message.
Will be ignored if include-date=false

date-format The date format to use for the timestamp as
understood by java.text.SimpleDateFormat. Will
be ignored if include-date=false

compact If true will format the JSON on one line. There
may still be values containing new lines, so if
having the whole record on one line is
important, set escape-new-line or escape-
control-characters to true

escape-control-characters If true it will escape all control characters (ascii
entries with a decimal value < 32) with the ascii
code in octal, e.g. a new line becomes '#012'. If
this is true, it will override escape-new-
line=false

escape-new-line If true it will escape all new lines with the ascii
code in octal, e.g. "#012".

11.4.2. Handlers

A handler is responsible for taking the formatted data and logging it to a location. There are
currently two types of handlers, File and Syslog. You can configure several of each type of handler

227

and use them to log information.

File handler

The file handlers log the audit log records to a file on the server. The attributes for the file handler
are

Attribute Description Read Only

formatter The name of a JSON formatter
to use to format the log records

false

path The path of the audit log file false

relative-to The name of another previously
named path, or of one of the
standard paths provided by the
system. If relative-to is
provided, the value of the path
attribute is treated as relative to
the path specified by this
attribute

false

failure-count The number of logging failures
since the handler was
initialized

true

max-failure-count The maximum number of
logging failures before
disabling this handler

false

disabled-due-to-failure true if this handler was
disabled due to logging failures

true

In our standard configuration path=audit-log.log and relative-to=jboss.server.data.dir, typically
this will be $JBOSS_HOME/standalone/data/audit-log.log

Syslog handler

The default configuration does not have syslog audit logging set up. Syslog is a better choice for
audit logging since you can log to a remote syslog server, and secure the authentication to happen
over TLS with client certificate authentication. Syslog servers vary a lot in their capabilities so not
all settings in this section apply to all syslog servers. We have tested with rsyslog.

The address for the syslog handler is /core-service=management/access=audit/syslog-handler=* and
just like file handlers you can add as many syslog entries as you like. The syslog handler resources
reference the main RFC’s for syslog a fair bit, for reference they can be found at:
* http://www.ietf.org/rfc/rfc3164.txt
* http://www.ietf.org/rfc/rfc5424.txt
* http://www.ietf.org/rfc/rfc6587.txt

The syslog handler resource has the following attributes:

228

http://www.rsyslog.com
http://www.ietf.org/rfc/rfc3164.txt
http://www.ietf.org/rfc/rfc5424.txt
http://www.ietf.org/rfc/rfc6587.txt

formatter The name of a JSON formatter
to use to format the log
records

false

failure-count The number of logging failures
since the handler was
initialized

true

max-failure-count The maximum number of
logging failures before
disabling this handler

false

disabled-due-to-failure true if this handler was
disabled due to logging failures

true

syslog-format Whether to set the syslog
format to the one specified in
RFC-5424 or RFC-3164

false

max-length The maximum length in bytes a
log message, including the
header, is allowed to be. If
undefined, it will default to
1024 bytes if the syslog-format
is RFC3164, or 2048 bytes if the
syslog-format is RFC5424.

false

truncate Whether or not a message,
including the header, should
truncate the message if the
length in bytes is greater than
the maximum length. If set to
false messages will be split and
sent with the same header
values

false

When adding a syslog handler you also need to add the protocol it will use to communicate with the
syslog server. The valid choices for protocol are UDP, TCP and TLS. The protocol must be added at the
same time as you add the syslog handler, or it will fail. Also, you can only add one protocol for the
handler.

UDP

Configures the handler to use UDP to communicate with the syslog server. The address of the UDP
resource is /core-service=management/access=audit/syslog-handler=*/protocol=udp. The attributes of
the UDP resource are:

Attribute Description

host The host of the syslog server for the udp
requests

port The port of the syslog server listening for the
udp requests

229

TCP

Configures the handler to use TCP to communicate with the syslog server. The address of the TCP
resource is /core-service=management/access=audit/syslog-handler=*/protocol=tcp. The attributes of
the TCP resource are:

Attribute Description

host The host of the syslog server for the tcp requests

port The port of the syslog server listening for the tcp
requests

message-transfer The message transfer setting as described in
section 3.4 of RFC-6587. This can either be
OCTET_COUNTING as described in section 3.4.1
of RFC-6587, or NON_TRANSPARENT_FRAMING
as described in section 3.4.1 of RFC-6587

TLS

Configures the handler to use TLC to communicate securely with the syslog server. The address of
the TLS resource is /core-service=management/access=audit/syslog-handler=*/protocol=tls. The
attributes of the TLS resource are the same as for TCP:

Attribute Description

host The host of the syslog server for the tls requests

port The port of the syslog server listening for the tls
requests

message-transfer The message transfer setting as described in
section 3.4 of RFC-6587. This can either be
OCTET_COUNTING as described in section 3.4.1
of RFC-6587, or NON_TRANSPARENT_FRAMING
as described in section 3.4.1 of RFC-6587

If the syslog server’s TLS certificate is not signed by a certificate signing authority, you will need to
set up a truststore to trust the certificate. The resource for the trust store is a child of the TLS
resource, and the full address is /core-service=management/access=audit/syslog-

handler=*/protocol=tls/authentication=truststore. The attributes of the truststore resource are:

Attribute Description

keystore-password The password for the truststore

keystore-path The path of the truststore

keystore-relative-to The name of another previously named path, or
of one of the standard paths provided by the
system. If keystore-relative-to is provided, the
value of the keystore-path attribute is treated as
relative to the path specified by this attribute

230

TLS with Client certificate authentication.

If you have set up the syslog server to require client certificate authentication, when creating your
handler you will also need to set up a client certificate store containing the certificate to be
presented to the syslog server. The address of the client certificate store resource is /core-
service=management/access=audit/syslog-handler=*/protocol=tls/authentication=client-

certificate-store and its attributes are:

Attribute Description

keystore-password The password for the keystore

key-password The password for the keystore key

keystore-path The path of the keystore

keystore-relative-to The name of another previously named path, or
of one of the standard paths provided by the
system. If keystore-relative-to is provided, the
value of the keystore-path attribute is treated as
relative to the path specified by this attribute

11.4.3. Logger configuration

The final part that needs configuring is the logger for the management operations. This references
one or more handlers and is configured at /core-service=management/access=audit/logger=audit-
log. The attributes for this resource are:

Attribute Description

enabled true to enable logging of the management
operations

log-boot true to log the management operations when
booting the server, false otherwise

log-read-only If true all operations will be audit logged, if false
only operations that change the model will be
logged

Then which handlers are used to log the management operations are configured as handler=*
children of the logger.

11.4.4. Domain Mode (host specific configuration)

In domain mode audit logging is configured for each host in its host.xml file. This means that when
connecting to the DC, the configuration of the audit logging is under the host’s entry, e.g. here is the
default configuration:

231

[domain@localhost:9990 /] /host=master/core-service=management/access=audit:read-
resource(recursive=true)
{
 "outcome" => "success",
 "result" => {
 "file-handler" => {
 "host-file" => {
 "formatter" => "json-formatter",
 "max-failure-count" => 10,
 "path" => "audit-log.log",
 "relative-to" => "jboss.domain.data.dir"
 },
 "server-file" => {
 "formatter" => "json-formatter",
 "max-failure-count" => 10,
 "path" => "audit-log.log",
 "relative-to" => "jboss.server.data.dir"
 }
 },
 "json-formatter" => {"json-formatter" => {
 "compact" => false,
 "date-format" => "yyyy-MM-dd HH:mm:ss",
 "date-separator" => " - ",
 "escape-control-characters" => false,
 "escape-new-line" => false,
 "include-date" => true
 }},
 "logger" => {"audit-log" => {
 "enabled" => false,
 "log-boot" => true,
 "log-read-only" => false,
 "handler" => {"host-file" => {}}
 }},
 "server-logger" => {"audit-log" => {
 "enabled" => false,
 "log-boot" => true,
 "log-read-only" => false,
 "handler" => {"server-file" => {}}
 }},
 "syslog-handler" => undefined
 }
}

We now have two file handlers, one called host-file used to configure the file to log management
operations on the host, and one called server-file used to log management operations executed on
the servers. Then logger=audit-log is used to configure the logger for the host controller,
referencing the host-file handler. server-logger=audit-log is used to configure the logger for the
managed servers, referencing the server-file handler. The attributes for server-logger=audit-log
are the same as for server-logger=audit-log in the previous section. Having the host controller and

232

server loggers configured independently means we can control audit logging for managed servers
and the host controller independently.

11.5. Canceling Management Operations
WildFly includes the ability to use the CLI to cancel management requests that are not proceeding
normally.

11.5.1. The cancel-non-progressing-operation operation

The cancel-non-progressing-operation operation instructs the target process to find any operation
that isn’t proceeding normally and cancel it.

On a standalone server:

[standalone@localhost:9990 /] /core-service=management/service=management-operations
:cancel-non-progressing-operation
{
 "outcome" => "success",
 "result" => "-1155777943"
}

The result value is an internal identification number for the operation that was cancelled.

On a managed domain host controller, the equivalent resource is in the host=<hostname> portion
of the management resource tree:

[domain@localhost:9990 /] /host=host-a/core-service=management/service=management-
operations:cancel-non-progressing-operation
{
 "outcome" => "success",
 "result" => "2156877946"
}

An operation can be cancelled on an individual managed domain server as well:

[domain@localhost:9990 /] /host=host-a/server=server-one/core-service=management
/service=management-operations:cancel-non-progressing-operation
{
 "outcome" => "success",
 "result" => "6497786512"
}

An operation is considered to be not proceeding normally if it has been executing with the
exclusive operation lock held for longer than 15 seconds. Read-only operations do not acquire the
exclusive operation lock, so this operation will not cancel read-only operations. Operations blocking

233

waiting for another operation to release the exclusive lock will also not be cancelled.

If there isn’t any operation that is failing to proceed normally, there will be a failure response:

[standalone@localhost:9990 /] /core-service=management/service=management-operations
:cancel-non-progressing-operation
{
 "outcome" => "failed",
 "failure-description" => "WFLYDM0089: No operation was found that has been holding
the operation execution write lock for long than [15] seconds",
 "rolled-back" => true
}

11.5.2. The find-non-progressing-operation operation

To simply learn the id of an operation that isn’t proceeding normally, but not cancel it, use the find-
non-progressing-operation operation:

[standalone@localhost:9990 /] /core-service=management/service=management-operations
:find-non-progressing-operation
{
 "outcome" => "success",
 "result" => "-1155777943"
}

If there is no non-progressing operation, the outcome will still be success but the result will be
undefined.

Once the id of the operation is known, the management resource for the operation can be
examined to learn more about its status.

11.5.3. Examining the status of an active operation

There is a management resource for any currently executing operation that can be queried:

234

[standalone@localhost:9990 /] /core-service=management/service=management-operations
/active-operation=-1155777943:read-resource(include-runtime=true)
{
 "outcome" => "success",
 "result" => {
 "access-mechanism" => "undefined",
 "address" => [
 ("deployment" => "example")
],
 "caller-thread" => "management-handler-thread - 24",
 "cancelled" => false,
 "exclusive-running-time" => 101918273645L,
 "execution-status" => "awaiting-stability",
 "operation" => "deploy",
 "running-time" => 101918279999L
 }
}

The response includes the following attributes:

Field Meaning

access-mechanism The mechanism used to submit a request to the
server. NATIVE, JMX, HTTP

address The address of the resource targeted by the
operation. The value in the final element of the
address will be '<hidden>' if the caller is not
authorized to address the operation’s target
resource.

caller-thread The name of the thread that is executing the
operation.

cancelled Whether the operation has been cancelled.

exclusive-running-time Amount of time in nanoseconds the operation
has been executing with the exclusive operation
execution lock held, or -1 if the operation does
not hold the exclusive execution lock.

execution-status The current activity of the operation. See below
for details.

operation The name of the operation, or '<hidden>' if the
caller is not authorized to address the
operation’s target resource.

running-time Amount of time the operation has been
executing, in nanoseconds.

The following are the values for the exclusive-running-time attribute:

235

Value Meaning

executing The caller thread is actively executing

awaiting-other-operation The caller thread is blocking waiting for another
operation to release the exclusive execution lock

awaiting-stability The caller thread has made changes to the
service container and is waiting for the service
container to stabilize

completing The operation is committed and is completing
execution

rolling-back The operation is rolling back

All currently executing operations can be viewed in one request using the read-children-resources
operation:

[standalone@localhost:9990 /] /core-service=management/service=management-operations
:read-children-resources(child-type=active-operation)
{
 "outcome" => "success",
 "result" => {"-1155777943" => {
 "access-mechanism" => "undefined",
 "address" => [
 ("deployment" => "example")
],
 "caller-thread" => "management-handler-thread - 24",
 "cancelled" => false,
 "exclusive-running-time" => 101918273645L,
 "execution-status" => "awaiting-stability",
 "operation" => "deploy",
 "running-time" => 101918279999L
 },
 {"-1246693202" => {
 "access-mechanism" => "undefined",
 "address" => [
 ("core-service" => "management"),
 ("service" => "management-operations")
],
 "caller-thread" => "management-handler-thread - 30",
 "cancelled" => false,
 "exclusive-running-time" => -1L,
 "execution-status" => "executing",
 "operation" => "read-children-resources",
 "running-time" => 3356000L
 }}
}

236

11.5.4. Canceling a specific operation

The cancel-non-progressing-operation operation is a convenience operation for identifying and
canceling an operation. However, an administrator can examine the active-operation resources to
identify any operation, and then directly cancel it by invoking the cancel operation on the resource
for the desired operation.

[standalone@localhost:9990 /] /core-service=management/service=management-operations
/active-operation=-1155777943:cancel
{
 "outcome" => "success",
 "result" => undefined
}

11.5.5. Controlling operation blocking time

As an operation executes, the execution thread may block at various points, particularly while
waiting for the service container to stabilize following any changes. Since an operation may be
holding the exclusive execution lock while blocking, in WildFly execution behavior was changed to
ensure that blocking will eventually time out, resulting in roll back of the operation.

The default blocking timeout is 300 seconds. This is intentionally long, as the idea is to only trigger a
timeout when something has definitely gone wrong with the operation, without any false positives.

An administrator can control the blocking timeout for an individual operation by using the
blocking-timeout operation header. For example, if a particular deployment is known to take an
extremely long time to deploy, the default 300 second timeout could be increased:

[standalone@localhost:9990 /] deploy /tmp/mega.war --headers={blocking-timeout=450}

Note the blocking timeout is not a guaranteed maximum execution time for an operation. If it only
a timeout that will be enforced at various points during operation execution.

11.6. Configuration file history
The management operations may modify the model. When this occurs the xml backing the model is
written out again reflecting the latest changes. In addition a full history of the file is maintained.
The history of the file goes in a separate directory under the configuration directory.

As mentioned in Command line parameters the default configuration file can be selected using a
command-line parameter. For a standalone server instance the history of the active standalone.xml
is kept in jboss.server.config.dir/standalone_xml_history (See Command line
parameters#standalone_system_properties for more details). For a domain the active domain.xml
and host.xml histories are kept in jboss.domain.config.dir/domain_xml_history and
jboss.domain.config.dir/host_xml_history.

The rest of this section will only discuss the history for standalone.xml. The concepts are exactly the

237

#src-557061
#src-557061
#src-557061

same for domain.xml and host.xml.

Within standalone_xml_history itself following a successful first time boot we end up with three
new files:

• standalone.initial.xml - This contains the original configuration that was used the first time we
successfully booted. This file will never be overwritten. You may of course delete the history
directory and any files in it at any stage.

• standalone.boot.xml - This contains the original configuration that was used for the last
successful boot of the server. This gets overwritten every time we boot the server successfully.

• standalone.last.xml - At this stage the contents will be identical to standalone.boot.xml. This file
gets overwritten each time the server successfully writes the configuration, if there was an
unexpected failure writing the configuration this file is the last known successful write.

standalone_xml_history contains a directory called current which should be empty. Now if we
execute a management operation that modifies the model, for example adding a new system
property using the CLI:

[standalone@localhost:9990 /] /system-property=test:add(value="test123")
{"outcome" => "success"}

What happens is:

• The original configuration file is backed up to
standalone_xml_history/current/standalone.v1.xml. The next change to the model would result
in a file called standalone.v2.xml etc. The 100 most recent of these files are kept.

• The change is applied to the original configuration file

• The changed original configuration file is copied to standalone.last.xml

When restarting the server, any existing standalone_xml_history/current directory is moved to a
new timestamped folder within the standalone_xml_history, and a new current folder is created.
These timestamped folders are kept for 30 days.

11.6.1. Snapshots

In addition to the backups taken by the server as described above you can manually take take
snapshots which will be stored in the snapshot folder under the _xml_history folder, the automatic
backups described above are subject to automatic house keeping so will eventually be
automatically removed, the snapshots on the other hand can be entirely managed by the
administrator.

You may also take your own snapshots using the CLI:

238

[standalone@localhost:9990 /] :take-snapshot
{
 "outcome" => "success",
 "result" => {"name" =>
"/Users/kabir/wildfly/standalone/configuration/standalone_xml_history/snapshot/2011063
0-172258657standalone.xml"}
}

You can also use the CLI to list all the snapshots

[standalone@localhost:9990 /] :list-snapshots
{
 "outcome" => "success",
 "result" => {
 "directory" =>
"/Users/kabir/wildfly/standalone/configuration/standalone_xml_history/snapshot",
 "names" => [
 "20110630-165714239standalone.xml",
 "20110630-165821795standalone.xml",
 "20110630-170113581standalone.xml",
 "20110630-171411463standalone.xml",
 "20110630-171908397standalone.xml",
 "20110630-172258657standalone.xml"
]
 }
}

To delete a particular snapshot:

[standalone@localhost:9990 /] :delete-snapshot(name="20110630-165714239standalone.xml
")
{"outcome" => "success"}

and to delete all snapshots:

[standalone@localhost:9990 /] :delete-snapshot(name="all")
{"outcome" => "success"}

In domain mode executing the snapshot operations against the root node will work against the
domain model. To do this for a host model you need to navigate to the host in question:

239

[domain@localhost:9990 /] /host=master:list-snapshots
{
 "outcome" => "success",
 "result" => {
 "domain-results" => {"step-1" => {
 "directory" =>
"/Users/kabir/wildfly/domain/configuration/host_xml_history/snapshot",
 "names" => [
 "20110630-141129571host.xml",
 "20110630-172522225host.xml"
]
 }},
 "server-operations" => undefined
 }
}

11.6.2. Subsequent Starts

For subsequent server starts it may be desirable to take the state of the server back to one of the
previously known states, for a number of items an abbreviated reverence to the file can be used:

Abreviation Parameter Description

initial --server-config=initial This will start the server using
the initial configuration first
used to start the server.

boot --server-config=boot This will use the configuration
from the last successful boot of
the server.

last --server-config=last This will start the server using
the configuration backed up
from the last successful save.

v? --server-config=v? This will server the
_xml_history/current folder for
the configuration where ? is the
number of the backup to use.

-? --server-config=-? The server will be started after
searching the snapshot folder
for the configuration which
matches this prefix.

In addition to this the --server-config parameter can always be used to specify a configuration
relative to the jboss.server.config.dir and finally if no matching configuration is found an attempt
to locate the configuration as an absolute path will be made.

240

Chapter 12. Management API reference
This section is an in depth reference to the WildFly management API. Readers are encouraged to
read the Management clients and Core management concepts sections for fundamental background
information, as well as the Management tasks and Domain setup sections for key task oriented
information. This section is meant as an in depth reference to delve into some of the key details.

12.1. Global operations
The WildFly management API includes a number of operations that apply to every resource.

12.1.1. The read-resource operation

Reads a management resource’s attribute values along with either basic or complete information
about any child resources. Supports the
following parameters, none of which are required:

• recursive – (boolean, default is false) – whether to include complete information about child
resources, recursively.

• recursive-depth – (int) – The depth to which information about child resources should be
included if recursive is true. If not set, the depth will be unlimited; i.e. all descendant resources
will be included.

• proxies – (boolean, default is false) – whether to include remote resources in a recursive query
(i.e. host level resources from slave Host Controllers in a query of the Domain Controller;
running server resources in a query of a host).

• include-runtime – (boolean, default is false) – whether to include runtime attributes (i.e. those
whose value does not come from the persistent configuration) in the response.

• include-defaults – (boolean, default is true) – whether to include in the result default values not
set by users. Many attributes have a default value that will be used in the runtime if the users
have not provided an explicit value. If this parameter is false the value for such attributes in
the result will be undefined. If true the result will include the default value for such parameters.

12.1.2. The read-attribute operation

Reads the value of an individual attribute. Takes a single, required, parameter:

• name – (string) – the name of the attribute to read.

• include-defaults – (boolean, default is true) – whether to include in the result default values not
set by users. Many attributes have a default value that will be used in the runtime if the users
have not provided an explicit value. If this parameter is false the value for such attributes in
the result will be undefined. If true the result will include the default value for such parameters.

12.1.3. The write-attribute operation

Writes the value of an individual attribute. Takes two required parameters:

241

Management_Clients.html
Core_management_concepts.html
Management_tasks.adoc
Domain_Setup.adoc

• name – (string) – the name of the attribute to write.

• value – (type depends on the attribute being written) – the new value.

12.1.4. The undefine-attribute operation

Sets the value of an individual attribute to the undefined value, if such a value is allowed for the
attribute. The operation will fail if the undefined value is not allowed. Takes a single required
parameter:

• name – (string) – the name of the attribute to write.

12.1.5. The list-add operation

Adds an element to the value of a list attribute, adding the element to the end of the list unless the
optional attribute index is passed:

• name – (string) – the name of the list attribute to add new value to.

• value – (type depends on the element being written) – the new element to be added to the
attribute value.

• index – (int, optional) – index where in the list to add the new element. By default it is undefined
meaning add at the end. Index is zero based.

This operation will fail if the specified attribute is not a list.

12.1.6. The list-remove operation

Removes an element from the value of a list attribute, either the element at a specified index, or the
first element whose value matches a specified value:

• name – (string) – the name of the list attribute to add new value to.

• value – (type depends on the element being written, optional) – the element to be removed.
Optional and ignored if index is specified.

• index – (int, optional) – index in the list whose element should be removed. By default it is
undefined, meaning value should be specified.

This operation will fail if the specified attribute is not a list.

12.1.7. The list-get operation

Gets one element from a list attribute by its index

• name – (string) – the name of the list attribute

• index – (int, required) – index of element to get from list

This operation will fail if the specified attribute is not a list.

242

12.1.8. The list-clear operation

Empties the list attribute. It is different from :undefine-attribute as it results in attribute of type list
with 0 elements, whereas :undefine-attribute results in an undefined value for the attribute

• name – (string) – the name of the list attribute

This operation will fail if the specified attribute is not a list.

12.1.9. The map-put operation

Adds an key/value pair entry to the value of a map attribute:

• name – (string) – the name of the map attribute to add the new entry to.

• key – (string) – the key of the new entry to be added.

• value – (type depends on the entry being written) – the value of the new entry to be added to the
attribute value.

This operation will fail if the specified attribute is not a map.

12.1.10. The map-remove operation

Removes an entry from the value of a map attribute:

• name – (string) – the name of the map attribute to remove the new entry from.

• key – (string) – the key of the entry to be removed.

This operation will fail if the specified attribute is not a map.

12.1.11. The map-get operation

Gets the value of one entry from a map attribute

• name – (string) – the name of the map attribute

• key – (string) – the key of the entry.

This operation will fail if the specified attribute is not a map.

12.1.12. The map-clear operation

Empties the map attribute. It is different from :undefine-attribute as it results in attribute of type
map with 0 entries, whereas :undefine-attribute results in an undefined value for the attribute

• name – (string) – the name of the map attribute

This operation will fail if the specified attribute is not a map.

243

12.1.13. The read-resource-description operation

Returns the description of a resource’s attributes, types of children and, optionally, operations.
Supports the
following parameters, none of which are required:

• recursive – (boolean, default is false) – whether to include information about child resources,
recursively.

• proxies – (boolean, default is false) – whether to include remote resources in a recursive query
(i.e. host level resources from slave Host Controllers in a query of the Domain Controller;
running server resources in a query of a host)

• operations – (boolean, default is false) – whether to include descriptions of the resource’s
operations

• inherited – (boolean, default is true) – if operations is true, whether to include descriptions of
operations inherited from higher level resources. The global operations described in this section
are themselves inherited from the root resource, so the primary effect of setting inherited to
false is to exclude the descriptions of the global operations from the output.

See Description of the Management Model for details on the result of this operation.

12.1.14. The read-operation-names operation

Returns a list of the names of all the operations the resource supports. Takes no parameters.

12.1.15. The read-operation-description operation

Returns the description of an operation, along with details of its parameter types and its return
value. Takes a single, required, parameter:

• name – (string) – the name of the operation

See Description of the Management Model for details on the result of this operation.

12.1.16. The read-children-types operation

Returns a list of the types of child resources the resource supports. Takes two optional parameters:

• include-aliases – (boolean, default is false) – whether to include alias children (i.e. those which
are aliases of other sub-resources) in the response.

• include-singletons – (boolean, default is false) – whether to include singleton children (i.e.
those are children that acts as resource aggregate and are registered with a wildcard name) in
the response wildfly-dev discussion around this topic.

12.1.17. The read-children-names operation

Returns a list of the names of all child resources of a given type. Takes a single, required,
parameter:

244

Description_of_the_Management_Model.html
Description_of_the_Management_Model.html
Management_resources.html#src-557064_Managementresources-Address
http://lists.jboss.org/pipermail/wildfly-dev/2014-August/002701.html
Management_resources.html#src-557064_Managementresources-Address

• child-type – (string) – the name of the type

12.1.18. The read-children-resources operation

Returns information about all of a resource’s children that are of a given type. For each child
resource, the returned information is equivalent to executing the read-resource operation on that
resource. Takes the following parameters, of which only \{{child-type} is required:

• child-type – (string) – the name of the type of child resource

• recursive – (boolean, default is false) – whether to include complete information about child
resources, recursively.

• recursive-depth – (int) – The depth to which information about child resources should be
included if recursive is \{{true}. If not set, the depth will be unlimited; i.e. all descendant
resources will be included.

• proxies – (boolean, default is false) – whether to include remote resources in a recursive query
(i.e. host level resources from slave Host Controllers in a query of the Domain Controller;
running server resources in a query of a host)

• include-runtime – (boolean, default is false) – whether to include runtime attributes (i.e. those
whose value does not come from the persistent configuration) in the response.

• include-defaults – (boolean, default is true) – whether to include in the result default values not
set by users. Many attributes have a default value that will be used in the runtime if the users
have not provided an explicit value. If this parameter is false the value for such attributes in
the result will be undefined. If true the result will include the default value for such parameters.

12.1.19. The read-attribute-group operation

Returns a list of attributes of a type for a given attribute group name. For each attribute the
returned information is equivalent to executing the read-attribute operation of that resource.
Takes the following parameters, of which only \{{name} is required:

• name – (string) – the name of the attribute group to read.

• include-defaults – (boolean, default is true) – whether to include in the result default values not
set by users. Many attributes have a default value that will be used in the runtime if the users
have not provided an explicit value. If this parameter is false the value for such attributes in
the result will be undefined. If true the result will include the default value for such parameters.

• include-runtime – (boolean, default is false) – whether to include runtime attributes (i.e. those
whose value does not come from the persistent configuration) in the response.

• include-aliases – (boolean, default is false) – whether to include alias attributes (i.e. those
which are alias of other attributes) in the response.

12.1.20. The read-attribute-group-names operation

Returns a list of attribute groups names for a given type. Takes no parameters.

245

Management_resources.html#src-557064_Managementresources-Address
Management_resources.html#src-557064_Managementresources-Address
Management_resources.html#src-557064_Managementresources-Address

12.1.21. Standard Operations

Besides the global operations described above, by convention nearly every resource should expose
an add operation and a remove operation. Exceptions to this convention are the root resource, and
resources that do not store persistent configuration and are created dynamically at runtime (e.g.
resources representing the JVM’s platform mbeans or resources representing aspects of the
running state of a deployment.)

The add operation

The operation that creates a new resource must be named add. The operation may take zero or
more parameters; what those parameters are depends on the resource being created.

The remove operation

The operation that removes an existing resource must be named remove. The operation should take
no parameters.

12.2. Detyped management and the jboss-dmr library
The management model exposed by WildFly is very large and complex. There are dozens, probably
hundreds of logical concepts involved – hosts, server groups, servers, subsystems, datasources, web
connectors, and on and on – each of which in a classic objected oriented API design could be
represented by a Java type (i.e. a Java class or interface.) However, a primary goal in the
development of WildFly’s native management API was to ensure that clients built to use the API
had as few compile-time and run-time dependencies on JBoss-provided classes as possible, and that
the API exposed by those libraries be powerful but also simple and stable. A management client
running with the management libraries created for an earlier version of WildFly should still work
if used to manage a later version domain. The management client libraries needed to be forward
compatible.

It is highly unlikely that an API that consists of hundreds of Java types could be kept forward
compatible. Instead, the WildFly management API is a detyped API. A detyped API is like
decaffeinated coffee – it still has a little bit of caffeine, but not enough to keep you awake at night.
WildFly’s management API still has a few Java types in it (it’s impossible for a Java library to have
no types!) but not enough to keep you (or us) up at night worrying that your management clients
won’t be forward compatible.

A detyped API works by making it possible to build up arbitrarily complex data structures using a
small number of Java types. All of the parameter values and return values in the API are expressed
using those few types. Ideally, most of the types are basic JDK types, like java.lang.String,
java.lang.Integer, etc. In addition to the basic JDK types, WildFly’s detyped management API uses a
small library called jboss-dmr. The purpose of this section is to provide a basic overview of the
jboss-dmr library.

Even if you don’t use jboss-dmr directly (probably the case for all but a few users), some of the
information in this section may be useful. When you invoke operations using the application
server’s Command Line Interface, the return values are just the text representation of of a jboss-
dmr ModelNode. If your CLI commands require complex parameter values, you may yourself end up

246

writing the text representation of a ModelNode. And if you use the HTTP management API, all
response bodies as well as the request body for any POST will be a JSON representation of a
ModelNode.

The source code for jboss-dmr is available on Github. The maven coordinates for a jboss-dmr
release are org.jboss.jboss-dmr:jboss-dmr.

12.2.1. ModelNode and ModelType

The public API exposed by jboss-dmr is very simple: just three classes, one of which is an enum!

The primary class is org.jboss.dmr.ModelNode. A ModelNode is essentially just a wrapper around some
value; the value is typically some basic JDK type. A ModelNode exposes a getType() method. This
method returns a value of type org.jboss.dmr.ModelType, which is an enum of all the valid types of
values. And that’s 95% of the public API; a class and an enum. (We’ll get to the third class, Property,
below.)

Basic ModelNode manipulation

To illustrate how to work with ModelNode s, we’ll use the Beanshell scripting library. We won’t get
into many details of beanshell here; it’s a simple and intuitive tool and hopefully the following
examples are as well.

We’ll start by launching a beanshell interpreter, with the jboss-dmr library available on the
classpath. Then we’ll tell beanshell to import all the jboss-dmr classes so they are available for use:

$ java -cp bsh-2.0b4.jar:jboss-dmr-1.0.0.Final.jar bsh.Interpreter
BeanShell 2.0b4 - by Pat Niemeyer (pat@pat.net)
bsh % import org.jboss.dmr.*;
bsh %

Next, create a ModelNode and use the beanshell print function to output what type it is:

bsh % ModelNode node = new ModelNode();
bsh % print(node.getType());
UNDEFINED

A new ModelNode has no value stored, so its type is ModelType.UNDEFINED.

Use one of the overloaded set method variants to assign a node’s value:

247

https://github.com/jbossas/jboss-dmr
http://www.beanshell.org

bsh % node.set(1);
bsh % print(node.getType());
INT
bsh % node.set(true);
bsh % print(node.getType());
BOOLEAN
bsh % node.set("Hello, world");
bsh % print(node.getType());
STRING

Use one of the asXXX() methods to retrieve the value:

bsh % node.set(2);
bsh % print(node.asInt());
2
bsh % node.set("A string");
bsh % print(node.asString());
A string

ModelNode will attempt to perform type conversions when you invoke the asXXX methods:

bsh % node.set(1);
bsh % print(node.asString());
1
bsh % print(node.asBoolean());
true
bsh % node.set(0);
bsh % print(node.asBoolean());
false
bsh % node.set("true");
bsh % print(node.asBoolean());
true

Not all type conversions are possible:

248

bsh % node.set("A string");
bsh % print(node.asInt());
// Error: // Uncaught Exception: Method Invocation node.asInt : at Line: 20 : in file:
<unknown file> : node .asInt ()

Target exception: java.lang.NumberFormatException: For input string: "A string"

java.lang.NumberFormatException: For input string: "A string"
 at java.lang.NumberFormatException.forInputString(NumberFormatException.java:48)
 at java.lang.Integer.parseInt(Integer.java:449)
 at java.lang.Integer.parseInt(Integer.java:499)
 at org.jboss.dmr.StringModelValue.asInt(StringModelValue.java:61)
 at org.jboss.dmr.ModelNode.asInt(ModelNode.java:117)

The ModelNode.getType() method can be used to ensure a node has an expected value type before
attempting a type conversion.

One set variant takes another ModelNode as its argument. The value of the passed in node is copied,
so there is no shared state between the two model nodes:

bsh % node.set("A string");
bsh % ModelNode another = new ModelNode();
bsh % another.set(node);
bsh % print(another.asString());
A string
bsh % node.set("changed");
bsh % print(node.asString());
changed
bsh % print(another.asString());
A string

A ModelNode can be cloned. Again, there is no shared state between the original node and its clone:

bsh % ModelNode clone = another.clone();
bsh % print(clone.asString());
A string
bsh % another.set(42);
bsh % print(another.asString());
42
bsh % print(clone.asString());
A string

Use the protect() method to make a ModelNode immutable:

249

bsh % clone.protect();
bsh % clone.set("A different string");
// Error: // Uncaught Exception: Method Invocation clone.set : at Line: 15 : in file:
<unknown file> : clone .set ("A different string")

Target exception: java.lang.UnsupportedOperationException

java.lang.UnsupportedOperationException
 at org.jboss.dmr.ModelNode.checkProtect(ModelNode.java:1441)
 at org.jboss.dmr.ModelNode.set(ModelNode.java:351)

Lists

The above examples aren’t particularly interesting; if all we can do with a ModelNode is wrap a
simple Java primitive, what use is that? However, a ModelNode’s value can be more complex than a
simple primitive, and using these more complex types we can build complex data structures. The

first more complex type is `ModelType.LIST.

Use the add methods to initialize a node’s value as a list and add to the list:

bsh % ModelNode list = new ModelNode();
bsh % list.add(5);
bsh % list.add(10);
bsh % print(list.getType());
LIST

Use asInt() to find the size of the list:

bsh % print(list.asInt());
2

Use the overloaded get method variant that takes an int param to retrieve an item. The item is
returned as a ModelNode:

bsh % ModelNode child = list.get(1);
bsh % print(child.asInt());
10

Elements in a list need not all be of the same type:

250

bsh % list.add("A string");
bsh % print(list.get(1).getType());
INT
bsh % print(list.get(2).getType());
STRING

Here’s one of the trickiest things about jboss-dmr: The get methods actually mutate state; they
are not "read-only". For example, calling get with an index that does not exist yet in the list will
actually create a child of type ModelType.UNDEFINED at that index (and will create UNDEFINED
children for any intervening indices.)

bsh % ModelNode four = list.get(4);
bsh % print(four.getType());
UNDEFINED
bsh % print(list.asInt());
6

Since the get call always returns a ModelNode and never null it is safe to manipulate the return
value:

bsh % list.get(5).set(30);
bsh % print(list.get(5).asInt());
30

That’s not so interesting in the above example, but later on with node of type ModelType.OBJECT we’ll
see how that kind of method chaining can let you build up fairly complex data structures with a
minimum of code.

Use the asList() method to get a List<ModelNode> of the children:

bsh % for (ModelNode element : list.asList()) {
print(element.getType());
}
INT
INT
STRING
UNDEFINED
UNDEFINED
INT

The asString() and toString() methods provide slightly differently formatted text representations
of a ModelType.LIST node:

251

bsh % print(list.asString());
[5,10,"A string",undefined,undefined,30]
bsh % print(list.toString());
[
 5,
 10,
 "A string",
 undefined,
 undefined,
 30
]

Finally, if you’ve previously used set to assign a node’s value to some non-list type, you cannot use
the add method:

bsh % node.add(5);
// Error: // Uncaught Exception: Method Invocation node.add : at Line: 18 : in file:
<unknown file> : node .add (5)

Target exception: java.lang.IllegalArgumentException

java.lang.IllegalArgumentException
 at org.jboss.dmr.ModelValue.addChild(ModelValue.java:120)
 at org.jboss.dmr.ModelNode.add(ModelNode.java:1007)
 at org.jboss.dmr.ModelNode.add(ModelNode.java:761)
 ...

You can, however, use the setEmptyList() method to change the node’s type, and then use add:

bsh % node.setEmptyList();
bsh % node.add(5);
bsh % print(node.toString());
[5]

Properties

The third public class in the jboss-dmr library is org.jboss.dmr.Property. A Property is a String ⇒
ModelNode tuple.

252

bsh % Property prop = new Property("stuff", list);
bsh % print(prop.toString());
org.jboss.dmr.Property@79a5f739
bsh % print(prop.getName());
stuff
bsh % print(prop.getValue());
[
 5,
 10,
 "A string",
 undefined,
 undefined,
 30
]

The property can be passed to ModelNode.set:

bsh % node.set(prop);
bsh % print(node.getType());
PROPERTY

The text format for a node of ModelType.PROPERTY is:

bsh % print(node.toString());
("stuff" => [
 5,
 10,
 "A string",
 undefined,
 undefined,
 30
])

Directly instantiating a Property via its constructor is not common. More typically one of the two
argument ModelNode.add or ModelNode.set variants is used. The first argument is the property name:

253

bsh % ModelNode simpleProp = new ModelNode();
bsh % simpleProp.set("enabled", true);
bsh % print(simpleProp.toString());
("enabled" => true)
bsh % print(simpleProp.getType());
PROPERTY
bsh % ModelNode propList = new ModelNode();
bsh % propList.add("min", 1);
bsh % propList.add("max", 10);
bsh % print(propList.toString());
[
 ("min" => 1),
 ("max" => 10)
]
bsh % print(propList.getType());
LIST
bsh % print(propList.get(0).getType());
PROPERTY

The asPropertyList() method provides easy access to a List<Property>:

bsh % for (Property prop : propList.asPropertyList()) {
print(prop.getName() + " = " + prop.getValue());
}
min = 1
max = 10

ModelType.OBJECT

The most powerful and most commonly used complex value type in jboss-dmr is ModelType.OBJECT.
A ModelNode whose value is ModelType.OBJECT internally maintains a Map<String, ModelNode.

Use the get method variant that takes a string argument to add an entry to the map. If no entry
exists under the given name, a new entry is added with a the value being a ModelType.UNDEFINED
node. The node is returned:

bsh % ModelNode range = new ModelNode();
bsh % ModelNode min = range.get("min");
bsh % print(range.toString());
{"min" => undefined}
bsh % min.set(2);
bsh % print(range.toString());
{"min" => 2}

Again it is important to remember that the get operation may mutate the state of a model
node by adding a new entry. It is not a read-only operation.

254

Since get will never return null, a common pattern is to use method chaining to create the
key/value pair:

bsh % range.get("max").set(10);
bsh % print(range.toString());
{
 "min" => 2,
 "max" => 10
}

A call to get passing an already existing key will of course return the same model node as was
returned the first time get was called with that key:

bsh % print(min == range.get("min"));
true

Multiple parameters can be passed to get. This is a simple way to traverse a tree made up of
ModelType.OBJECT nodes. Again, get may mutate the node on which it is invoked; e.g. it will actually
create the tree if nodes do not exist. This next example uses a workaround to get beanshell to
handle the overloaded get method that takes a variable number of arguments:

bsh % String[] varargs = { "US", "Missouri", "St. Louis" };
bsh % salesTerritories.get(varargs).set("Brian");
bsh % print(salesTerritories.toString());
{"US" => {"Missouri" => {"St. Louis" => "Brian"}}}

The normal syntax would be:

salesTerritories.get("US", "Missouri", "St. Louis").set("Brian");

The key/value pairs in the map can be accessed as a List<Property:

bsh % for (Property prop : range.asPropertyList()) {
print(prop.getName() + " = " + prop.getValue());
}
min = 2

The semantics of the backing map in a node of ModelType.OBJECT are those of a LinkedHashMap. The
map remembers the order in which key/value pairs are added. This is relevant when iterating over
the pairs after calling asPropertyList() and for controlling the order in which key/value pairs
appear in the output from toString().

Since the get method will actually mutate the state of a node if the given key does not exist,
ModelNode provides a couple methods to let you check whether the entry is there. The has method

255

simply does that:

bsh % print(range.has("unit"));
false
bsh % print(range.has("min"));
true

Very often, the need is to not only know whether the key/value pair exists, but whether the value is
defined (i.e. not ModelType.UNDEFINED. This kind of check is analogous to checking whether a field in
a Java class has a null value. The hasDefined lets you do this:

bsh % print(range.hasDefined("unit"));
false
bsh % // Establish an undefined child 'unit';
bsh % range.get("unit");
bsh % print(range.toString());
{
 "min" => 2,
 "max" => 10,
 "unit" => undefined
}
bsh % print(range.hasDefined("unit"));
false
bsh % range.get("unit").set("meters");
bsh % print(range.hasDefined("unit"));
true

ModelType.EXPRESSION

A value of type ModelType.EXPRESSION is stored as a string, but can later be resolved to different
value. The string has a special syntax that should be familiar to those who have used the system
property substitution feature in previous JBoss AS releases.

[<prefix>][${<system-property-name>[:<default-value>]}][<suffix>]*

For example:

${queue.length}
http://${host}
http://${host:localhost}:${port:8080}/index.html

Use the setExpression method to set a node’s value to type expression:

256

bsh % ModelNode expression = new ModelNode();
bsh % expression.setExpression("${queue.length}");
bsh % print(expression.getType());
EXPRESSION

Calling asString() returns the same string that was input:

bsh % print(expression.asString());
${queue.length}

However, calling toString() tells you that this node’s value is not of ModelType.STRING:

bsh % print(expression.toString());
expression "${queue.length}"

When the resolve operation is called, the string is parsed and any embedded system properties are
resolved against the JVM’s current system property values. A new ModelNode is returned whose
value is the resolved string:

bsh % System.setProperty("queue.length", "10");
bsh % ModelNode resolved = expression.resolve();
bsh % print(resolved.asInt());
10

Note that the type of the ModelNode returned by resolve() is ModelType.STRING:

bsh % print(resolved.getType());
STRING

The resolved.asInt() call in the previous example only worked because the string "10" happens to
be convertible into the int 10.

Calling resolve() has no effect on the value of the node on which the method is invoked:

bsh % resolved = expression.resolve();
bsh % print(resolved.toString());
"10"
bsh % print(expression.toString());
expression "${queue.length}"

If an expression cannot be resolved, resolve just uses the original string. The string can include
more than one system property substitution:

257

bsh % expression.setExpression("http://${host}:${port}/index.html");
bsh % resolved = expression.resolve();
bsh % print(resolved.asString());
http://${host}:${port}/index.html

The expression can optionally include a default value, separated from the name of the system
property by a colon:

bsh % expression.setExpression("http://${host:localhost}:${port:8080}/index.html");
bsh % resolved = expression.resolve();
bsh % print(resolved.asString());
http://localhost:8080/index.html

Actually including a system property substitution in the expression is not required:

bsh % expression.setExpression("no system property");
bsh % resolved = expression.resolve();
bsh % print(resolved.asString());
no system property
bsh % print(expression.toString());
expression "no system property"

The resolve method works on nodes of other types as well; it returns a copy without attempting any
real resolution:

bsh % ModelNode basic = new ModelNode();
bsh % basic.set(10);
bsh % resolved = basic.resolve();
bsh % print(resolved.getType());
INT
bsh % resolved.set(5);
bsh % print(resolved.asInt());
5
bsh % print(basic.asInt());
10

ModelType.TYPE

You can also pass one of the values of the ModelType enum to set:

258

bsh % ModelNode type = new ModelNode();
bsh % type.set(ModelType.LIST);
bsh % print(type.getType());
TYPE
bsh % print(type.toString());
LIST

This is useful when using a ModelNode data structure to describe another ModelNode data structure.

Full list of ModelNode types

BIG_DECIMAL
BIG_INTEGER
BOOLEAN
BYTES
DOUBLE
EXPRESSION
INT
LIST
LONG
OBJECT
PROPERTY
STRING
TYPE
UNDEFINED

Text representation of a ModelNode

TODO – document the grammar

JSON representation of a ModelNode

TODO – document the grammar

12.3. Description of the Management Model
A detailed description of the resources, attributes and operations that make up the management
model provided by an individual WildFly instance or by any Domain Controller or slave Host
Controller process can be queried using the read-resource-description, read-operation-names, read-
operation-description and read-child-types operations described in the Global operations section.
In this section we provide details on what’s included in those descriptions.

12.3.1. Description of the WildFly Managed Resources

All portions of the management model exposed by WildFly are addressable via an ordered list of
key/value pairs. For each addressable Management Resource , the following descriptive information
will be available:

259

Global_operations.html
Management_resources.html

• description – String – text description of this portion of the model

• min-occurs – int, either 0 or 1 – Minimum number of resources of this type that must exist in a
valid model. If not present, the default value is 0.

• max-occurs – int – Maximum number of resources of this type that may exist in a valid model. If
not present, the default value depends upon the value of the final key/value pair in the address
of the described resource. If this value is '*', the default value is Integer.MAX_VALUE, i.e. there is
no limit. If this value is some other string, the default value is 1.

• attributes – Map of String (the attribute name) to complex structure – the configuration
attributes available in this portion of the model. See below for the representation of each
attribute.

• operations – Map of String (the operation name) to complex structure – the operations that can
be targetted at this address. See below for the representation of each operation.

• children – Map of String (the type of child) to complex structure – the relationship of this
portion of the model to other addressable portions of the model. See below for the
representation of each child relationship.

• head-comment-allowed – boolean – indicates whether this portion of the model can store an XML
comment that would be written in the persistent form of the model (e.g. domain.xml) before the
start of the XML element that represents this portion of the model. This item is optional, and if
not present defaults to true. (Note: storing XML comments in the in-memory model is not
currently supported. This description key is for future use.)

• tail-comment-allowed – boolean – similar to head-comment-allowed, but indicates whether a
comment just before the close of the XML element is supported. A tail comment can only be
supported if the element has child elements, in which case a comment can be inserted between
the final child element and the element’s closing tag. This item is optional, and if not present
defaults to true. (Note: storing XML comments in the in-memory model is not currently
supported. This description key is for future use.)

For example:

260

#DescriptionoftheManagementModel-attribute-description
#DescriptionoftheManagementModel-operation-description
#DescriptionoftheManagementModel-children-description

{
 "description => "A manageable resource",
 "tail-comment-allowed" => false,
 "attributes" => {
 "foo" => {
 details of attribute foo
 }
 },
 "operations" => {
 "start" => {
 details of the start operation
 }
 },
 "children" => {
 "bar" => {
 details of the relationship with children of type "bar"
 }
 }
}

Description of an Attribute

An attribute is a portion of the management model that is not directly addressable. Instead, it is
conceptually a property of an addressable management resource. For each attribute in the model,
the following descriptive information will be available:

• description – String – text description of the attribute

• type – org.jboss.dmr.ModelType – the type of the attribute value. One of the enum values
BIG_DECIMAL, BIG_INTEGER, BOOLEAN, BYTES, DOUBLE, INT, LIST, LONG, OBJECT, PROPERTY,
STRING. Most of these are self-explanatory. An OBJECT will be represented in the detyped model
as a map of string keys to values of some other legal type, conceptually similar to a
javax.management.openmbean.CompositeData. A PROPERTY is a single key/value pair, where the key
is a string, and the value is of some other legal type.

• value-type – ModelType or complex structure – Only present if type is LIST or OBJECT. If all
elements in the LIST or all the values of the OBJECT type are of the same type, this will be one of
the ModelType enums BIG_DECIMAL, BIG_INTEGER, BOOLEAN, BYTES, DOUBLE, INT, LONG,
STRING. Otherwise, value-type will detail the structure of the attribute value, enumerating the
value’s fields and the type of their value. So, an attribute with a type of LIST and a value-type
value of ModelType.STRING is analogous to a Java List<String>, while one with a value-type value
of ModelType.INT is analogous to a Java List<Integer>. An attribute with a type of OBJECT and a
value-type value of ModelType.STRING is analogous to a Java Map<String, String>. An attribute
with a type of OBJECT and a value-type whose value is not of type ModelType represents a fully-
defined complex object, with the object’s legal fields and their values described.

• expressions-allowed – boolean – indicates whether the value of the attribute may be of type
ModelType.EXPRESSION, instead of its standard type (see type and value-type above for discussion
of an attribute’s standard type.) A value of ModelType.EXPRESSION contains a system-property
substitution expression that the server will resolve against the server-side system property map

261

Management_resources.html

before using the value. For example, an attribute named max-threads may have an expression
value of ${example.pool.max-threads:10} instead of just 10. Default value if not present is false.

• required – boolean – true if the attribute must have a defined value in a representation of its
portion of the model unless another attribute included in a list of alternatives is defined; false
if it may be undefined (implying a null value) even in the absence of alternatives. If not present,
true is the default.

• nillable – boolean – true if the attribute might not have a defined value in a representation of
its portion of the model. A nillable attribute may
be undefined either because it is not required or because it is required but has alternatives and
one of the alternatives is defined.

• storage – String – Either "configuration" or "runtime". If "configuration", the attribute’s value is
stored as part of the persistent configuration (e.g. in domain.xml, host.xml or standalone.xml.) If
"runtime" the attribute’s value is not stored in the persistent configuration; the value only exists
as long as the resource is running.

• access-type – String – One of "read-only", "read-write" or "metric". Whether an attribute value
can be written, or can only read. A "metric" is a read-only attribute whose value is not stored in
the persistent configuration, and whose value may change due to activity on the server. If an
attribute is "read-write", the resource will expose an operation named "write-attribute" whose
"name" parameter will accept this attribute’s name and whose "value" parameter will accept a
valid value for this attribute. That operation will be the standard means of updating this
attribute’s value.

• restart-required – String – One of "no-services", "all-services", "resource-services" or "jvm". Only
relevant to attributes whose access-type is read-write. Indicates whether execution of a write-
attribute operation whose name parameter specifies this attribute requires a restart of services
(or an entire JVM) in order for the change to take effect in the runtime . See discussion of "
Applying Updates to Runtime Services" below. Default value is "no-services".

• default – the default value for the attribute that will be used in runtime services if the attribute
is not explicitly defined and no other attributes listed as alternatives are defined.

• alternatives – List of string – Indicates an exclusive relationship between attributes. If this
attribute is defined, the other attributes listed in this descriptor’s value should be undefined,
even if their required descriptor says true; i.e. the presence of this attribute satisfies the
requirement. Note that an attribute that is not explicitly configured but has a default value is
still regarded as not being defined for purposes of checking whether the exclusive relationship
has been violated. Default is undefined; i.e. this does not apply to most attributes.

• requires – List of string – Indicates that if this attribute has a value (other than undefined), the
other attributes listed in this descriptor’s value must also have a value, even if their required
descriptor says false. This would typically be used in conjunction with alternatives. For
example, attributes "a" and "b" are required, but are alternatives to each other; "c" and "d" are
optional. But "b" requires "c" and "d", so if "b" is used, "c" and "d" must also be defined. Default
is undefined; i.e. this does not apply to most attributes.

• capability-reference – string – if defined indicates that this attribute’s value specifies the
dynamic portion of the name of the specified capability provided by another resource. This
indicates the attribute is a reference to another area of the management model. (Note that at
present some attributes that reference other areas of the model may not provide this

262

#DescriptionoftheManagementModel-applying-runtime-updates

information.)

• head-comment-allowed – boolean – indicates whether the model can store an XML comment that
would be written in the persistent form of the model (e.g. domain.xml) before the start of the
XML element that represents this attribute. This item is optional, and if not present defaults to
false. (This is a different default from what is used for an entire management resource, since
model attributes often map to XML attributes, which don’t allow comments.) (Note: storing XML
comments in the in-memory model is not currently supported. This description key is for future
use.)

• tail-comment-allowed – boolean – similar to head-comment-allowed, but indicates whether a
comment just before the close of the XML element is supported. A tail comment can only be
supported if the element has child elements, in which case a comment can be inserted between
the final child element and the element’s closing tag. This item is optional, and if not present
defaults to false. (This is a different default from what is used for an entire management
resource, since model attributes often map to XML attributes, which don’t allow comments.)
(Note: storing XML comments in the in-memory model is not currently supported. This
description key is for future use.)

• arbitrary key/value pairs that further describe the attribute value, e.g. "max" ⇒ 2. See "
Arbitrary Descriptors" below.

Some examples:

"foo" => {
 "description" => "The foo",
 "type" => INT,
 "max" => 2
}

"bar" => {
 "description" => "The bar",
 "type" => OBJECT,
 "value-type" => {
 "size" => INT,
 "color" => STRING
 }
}

Description of an Operation

A management resource may have operations associated with it. The description of an operation
will include the following information:

• operation-name – String – the name of the operation

• description – String – text description of the operation

• request-properties – Map of String to complex structure – description of the parameters of the
operation. Keys are the names of the parameters, values are descriptions of the parameter value

263

#DescriptionoftheManagementModel-arbitrary-descriptors

types. See below for details on the description of parameter value types.

• reply-properties – complex structure, or empty – description of the return value of the
operation, with an empty node meaning void. See below for details on the description of
operation return value types.

• restart-required – String – One of "no-services", "all-services", "resource-services" or "jvm".
Indicates whether the operation makes a configuration change that requires a restart of
services (or an entire JVM) in order for the change to take effect in the runtime. See discussion
of " Applying Updates to Runtime Services" below. Default value is "no-services".

Description of an Operation Parameter or Return Value

• description – String – text description of the parameter or return value

• type – org.jboss.dmr.ModelType – the type of the parameter or return value. One of the enum
values BIG_DECIMAL, BIG_INTEGER, BOOLEAN, BYTES, DOUBLE, INT, LIST, LONG, OBJECT,
PROPERTY, STRING.

• value-type – ModelType or complex structure – Only present if type is LIST or OBJECT. If all
elements in the LIST or all the values of the OBJECT type are of the same type, this will be one of
the ModelType enums BIG_DECIMAL, BIG_INTEGER, BOOLEAN, BYTES, DOUBLE, INT, LIST,
LONG, PROPERTY, STRING. Otherwise, value-type will detail the structure of the attribute value,
enumerating the value’s fields and the type of their value.So, a parameter with a type of LIST
and a value-type value of ModelType.STRING is analogous to a Java List<String>, while one with a
value-type value of ModelType.INT is analogous to a Java List<Integer>. A parameter with a type
of OBJECT and a value-type value of ModelType.STRING is analogous to a Java Map<String, String>.
A parameter with a type of OBJECT and a value-type whose value is not of type ModelType
represents a fully-defined complex object, with the object’s legal fields and their values
described.

• expressions-allowed – boolean – indicates whether the value of the the parameter or return
value may be of type ModelType.EXPRESSION, instead its standard type (see type and value-type
above for discussion of the standard type.) A value of ModelType.EXPRESSION contains a
system-property substitution expression that the server will resolve against the server-side
system property map before using the value. For example, a parameter named max-threads
may have an expression value of ${example.pool.max-threads:10} instead of just 10. Default
value if not present is false.

• required – boolean – true if the parameter or return value must have a defined value in the
operation or response unless another item included in a list of alternatives is defined; false if it
may be undefined (implying a null value) even in the absence of alternatives. If not present,
true is the default.

• nillable – boolean – true if the parameter or return value might not have a defined value in a
representation of its portion of the model. A nillable parameter or return value may be
undefined either because it is not required or because it is required but has alternatives and
one of the alternatives is defined.

• default – the default value for the parameter that will be used in runtime services if the
parameter is not explicitly defined and no other parameters listed as alternatives are defined.

• restart-required – String – One of "no-services", "all-services", "resource-services" or "jvm". Only
relevant to attributes whose access-type is read-write. Indicates whether execution of a write-

264

#DescriptionoftheManagementModel-param-description
#DescriptionoftheManagementModel-param-description
#DescriptionoftheManagementModel-applying-runtime-updates

attribute operation whose name parameter specifies this attribute requires a restart of services
(or an entire JVM) in order for the change to take effect in the runtime . See discussion of "
Applying Updates to Runtime Services" below. Default value is "no-services".

• alternatives – List of string – Indicates an exclusive relationship between parameters. If this
attribute is defined, the other parameters listed in this descriptor’s value should be undefined,
even if their required descriptor says true; i.e. the presence of this parameter satisfies the
requirement. Note that an parameer that is not explicitly configured but has a default value is
still regarded as not being defined for purposes of checking whether the exclusive relationship
has been violated. Default is undefined; i.e. this does not apply to most parameters.

• requires – List of string – Indicates that if this parameter has a value (other than undefined), the
other parameters listed in this descriptor’s value must also have a value, even if their required
descriptor says false. This would typically be used in conjunction with alternatives. For
example, parameters "a" and "b" are required, but are alternatives to each other; "c" and "d" are
optional. But "b" requires "c" and "d", so if "b" is used, "c" and "d" must also be defined. Default
is undefined; i.e. this does not apply to most parameters.

• arbitrary key/value pairs that further describe the attribute value, e.g. "max" ⇒2. See " Arbitrary
Descriptors" below.

Arbitrary Descriptors

The description of an attribute, operation parameter or operation return value type can include
arbitrary key/value pairs that provide extra information. Whether a particular key/value pair is
present depends on the context, e.g. a pair with key "max" would probably only occur as part of the
description of some numeric type.

Following are standard keys and their expected value type. If descriptor authors want to add an
arbitrary key/value pair to some descriptor and the semantic matches the meaning of one of the
following items, the standard key/value type must be used.

• min – int – the minimum value of some numeric type. The absence of this item implies there is
no minimum value.

• max – int – the maximum value of some numeric type. The absence of this item implies there is
no maximum value.

• min-length – int – the minimum length of some string, list or byte[] type. The absence of this item
implies a minimum length of zero.

• max-length – int – the maximum length of some string, list or byte[]. The absence of this item
implies there is no maximum value.

• allowed – List – a list of legal values. The type of the elements in the list should match the type of
the attribute.

• unit - The unit of the value, if one is applicable - e.g. ns, ms, s, m, h, KB, MB, TB. See the
org.jboss.as.controller.client.helpers.MeasurementUnit in the org.jboss.as:jboss-as-controller-
client artifact for a listing of legal measurement units..

Some examples:

265

#DescriptionoftheManagementModel-applying-runtime-updates
#DescriptionoftheManagementModel-arbitrary-descriptors
#DescriptionoftheManagementModel-arbitrary-descriptors

{
 "operation-name" => "incrementFoo",
 "description" => "Increase the value of the 'foo' attribute by the given amount",
 "request-properties" => {
 "increment" => {
 "type" => INT,
 "description" => "The amount to increment",
 "required" => true
 }},
 "reply-properties" => {
 "type" => INT,
 "description" => "The new value",
 }
}

{
 "operation-name" => "start",
 "description" => "Starts the thing",
 "request-properties" => {},
 "reply-properties" => {}
}

Description of Parent/Child Relationships

The address used to target an addressable portion of the model must be an ordered list of key value
pairs. The effect of this requirement is the addressable portions of the model naturally form a tree
structure, with parent nodes in the tree defining what the valid keys are and the children defining
what the valid values are. The parent node also defines the cardinality of the relationship. The
description of the parent node includes a children element that describes these relationships:

{

 "children" => {
 "connector" => {
 description of the relationship with children of type "connector"
 },
 "virtual-host" => {
 description of the relationship with children of type "virtual-
host"
 }
}

The description of each relationship will include the following elements:

• description – String – text description of the relationship

• model-description – either "undefined" or a complex structure – This is a node of

266

ModelType.OBJECT, the keys of which are legal values for the value portion of the address of a
resource of this type, with the special character '*' indicating the value portion can have an
arbitrary value. The values in the node are the full description of the particular child resource
(its text description, attributes, operations, children) as detailed above. This model-description
may also be "undefined", i.e. a null value, if the query that asked for the parent node’s
description did not include the "recursive" param set to true.

Example with if the recursive flag was set to true:

{
 "description" => "The connectors used to handle client connections",
 "model-description" => {
 "*" => {
 "description" => "Handles client connections",
 "min-occurs" => 1,
 "attributes => {
 ... details of children as documented above
 },
 "operations" => {
 details of operations as documented above
 },
 "children" => {
 details of the children's children
 }
 }
 }
}

If the recursive flag was false:

{
 "description" => "The connectors used to handle client connections",
 "model-description" => undefined
}

Applying Updates to Runtime Services

An attribute or operation description may include a " `restart-required`" descriptor; this section is
an explanation of the meaning of that descriptor.

An operation that changes a management resource’s persistent configuration usually can also also
affect a runtime service associated with the resource. For example, there is a runtime service
associated with any host.xml or standalone.xml <interface> element; other services in the runtime
depend on that service to provide the InetAddress associated with the interface. In many cases, an
update to a resource’s persistent configuration can be immediately applied to the associated
runtime service. The runtime service’s state is updated to reflect the new value(s).

However, in many cases the runtime service’s state cannot be updated without restarting the

267

service. Restarting a service can have broad effects. A restart of a service A will trigger a restart of
other services B, C and D that depend A, triggering a restart of services that depend on B, C and D,
etc. Those service restarts may very well disrupt handling of end-user requests.

Because restarting a service can be disruptive to end-user request handling, the handlers for
management operations will not restart any service without some form of explicit instruction from
the end user indicating a service restart is desired. In a few cases, simply executing the operation is
an indication the user wants services to restart (e.g. a /host=master/server-config=server-

one:restart operation in a managed domain, or a /:reload operation on a standalone server.) For
all other cases, if an operation (or attribute write) cannot be performed without restarting a
service, the metadata describing the operation or attribute will include a " `restart-required`"
descriptor whose value indicates what is necessary for the operation to affect the runtime:

• no-services – Applying the operation to the runtime does not require the restart of any services.
This value is the default if the restart-required descriptor is not present.

• all-services – The operation can only immediately update the persistent configuration;
applying the operation to the runtime will require a subsequent restart of all services in the
affected VM. Executing the operation will put the server into a " reload-required`" state. Until
a restart of all services is performed the response to this operation and to any subsequent
operation will include a response header " `process-state" ⇒ "reload-required`". For a

standalone server, a restart of all services can be accomplished by executing the `/:reload

CLI command. For a server in a managed domain, restarting all services currently requires a
full restart of the affected server VM (e.g. /host=master/server-config=server-one:restart).

• jvm --The operation can only immediately update the persistent configuration; applying the
operation to the runtime will require a full process restart (i.e. stop the JVM and launch a new
JVM). Executing the operation will put the server into a " restart-required`" state. Until a
restart is performed the response to this operation and to any subsequent operation will
include a response header " `process-state" ⇒ "restart-required`". For a standalone
server, a full process restart requires first stopping the server via OS-level operations

(Ctrl-C, kill) or via the `/:shutdown CLI command, and then starting the server again from
the command line. For a server in a managed domain, restarting a server requires executing the
/host=<host>/server-config=<server>:restart operation.

• resource-services – The operation can only immediately update the persistent configuration;
applying the operation to the runtime will require a subsequent restart of some services
associated with the resource. If the operation includes the request header "allow-resource-
service-restart" ⇒ true, the handler for the operation will go ahead and restart the runtime
service. Otherwise executing the operation will put the server into a " `reload-required`" state.
(See the discussion of " `all-services`" above for more on the " `reload-required`" state.)

12.4. The HTTP management API

12.4.1. Introduction

The Management API in WildFly is accessible through multiple channels, one of them being HTTP
and JSON.

Even if you haven’t used a curl command line you might already have used this channel since it is
how the web console interact with the Management API.

268

WildFly 9 is distributed secured by default, the default security mechanism is username / password
based making use of HTTP Digest for the authentication process.

Thus you need to create a user with the add-user.sh script.

12.4.2. Interacting with the model

Since we must be authenticated , the client will have to support HTTP Digest authentication.

For example this can be activated in curl using the --digest option.

The WildFly HTTP Management API adheres to the REST principles so the GET operations must be
idempotent.

This means that using a request with method GET can be used to read the model but you won’t be
able to change it.

You must use POST to change the model or read it. A POST request may contain the operation
either in DMR or in JSON format as its body.

You have to define the Content-Type=application/json header in the request to specify that you
are using some JSON.

If you want to submit DMR in the request body then the Content-Type or the Accept header should
be "application/dmr-encoded".

12.4.3. GET for Reading

While you can do everything with POST, some operations can be called through a 'classical' GET
request.

These are the supported operations for a GET :

• attribute : for a read-attribute operation

• resource : for a read-resource operation

• resource-description : for a read-resource-description operation

• snapshots : for the list-snapshots operation

• operation-description : for a read-operation-description operation

• operation-names : for ad read-operation-names operation

The URL format is the following one : http://server:9990/management/
<path_to_resource>?operation=<operation_name>&operation_parameter=<value>…

path_to_resource is the path to the wanted resource replacing all '=' with '/' : thus for example
subsystem=undertow/server=default-server becomes subsystem/undertow/server/default-server.

So to read the server-state :

269

add-user_utility.html
http://server:9990/management/

http://localhost:9990/management?operation=attribute&name=server-state&json.pretty=1

12.4.4. Let’s read some resource

• This is simple operation that is equivalent of running :read-attribute(name=server-state) with
CLI in root directory

◦ Using GET

http://localhost:9990/management?operation=attribute&name=server-
state&json.pretty=1

◦ Using POST

$ curl --digest -L -D - http://localhost:9990/management --header "Content-Type:
application/json" -d '{"operation":"read-attribute","name":"server-
state","json.pretty":1}' -u admin
Enter host password for user 'admin':
HTTP/1.1 401 Unauthorized
Connection: keep-alive
WWW-Authenticate: Digest realm="ManagementRealm",domain="/management",nonce=
"P80WU3BANtQNMTQwNjg5Mzc5MDQ2MlpjmRaZ+Vlp1OVeNEGBeXg=",opaque="00000000000000000
000000000000000",algorithm=MD5
Content-Length: 77
Content-Type: text/html
Date: Fri, 01 Aug 2014 11:49:50 GMT

HTTP/1.1 200 OK
Connection: keep-alive
Authentication-Info: nextnonce=
"M+h9aADejeINMTQwNjg5Mzc5MDQ2OPQbHKdAS8pRE8BbGEDY5uI="
Content-Type: application/json; charset=utf-8
Content-Length: 55
Date: Fri, 01 Aug 2014 11:49:50 GMT

{
 "outcome" : "success",
 "result" : "running"
}

• Here’s an example of an operation on a resource with a nested address and passed parameters.
This is same as if you would run /host=master/server=server-01:read-
attribute(name=server-state)

270

$ curl --digest -L -D - http://localhost:9990/management --header "Content-Type:
application/json" -d '{"operation":"read-
attribute","address":[{"host":"master"},{"server":"server-01"}],"name":"server-
state","json.pretty":1}'
HTTP/1.1 200 OK
Transfer-encoding: chunked
Content-type: application/json
Date: Tue, 17 Apr 2012 04:02:24 GMT

{
 "outcome" : "success",
 "result" : "running"
}

• Following example will get us information from http connection in undertow subsystem
including run-time attributes
This is the same as running /subsystem=undertow/server=default-server:read-resource(include-
runtime=true,recursive=true) in CLI

◦ Using GET

271

http://localhost:9990/management/subsystem/undertow/server/default-
server?operation=resource&recursive=true&json.pretty=1

{
 "default-host" : "default-host",
 "servlet-container" : "default",
 "ajp-listener" : null,
 "host" : {"default-host" : {
 "alias" : ["localhost"],
 "default-web-module" : "ROOT.war",
 "filter-ref" : {
 "server-header" : {"predicate" : null},
 "x-powered-by-header" : {"predicate" : null}
 },
 "location" : {"/" : {
 "handler" : "welcome-content",
 "filter-ref" : null
 }},
 "setting" : null
 }},
 "http-listener" : {"default" : {
 "allow-encoded-slash" : false,
 "allow-equals-in-cookie-value" : false,
 "always-set-keep-alive" : true,
 "buffer-pipelined-data" : true,
 "buffer-pool" : "default",
 "certificate-forwarding" : false,
 "decode-url" : true,
 "enabled" : true,
 "max-buffered-request-size" : 16384,
 "max-cookies" : 200,
 "max-header-size" : 51200,
 "max-headers" : 200,
 "max-parameters" : 1000,
 "max-post-size" : 10485760,
 "proxy-address-forwarding" : false,
 "read-timeout" : null,
 "receive-buffer" : null,
 "record-request-start-time" : false,
 "redirect-socket" : "https",
 "send-buffer" : null,
 "socket-binding" : "http",
 "tcp-backlog" : null,
 "tcp-keep-alive" : null,
 "url-charset" : "UTF-8",
 "worker" : "default",
 "write-timeout" : null
 }},
 "https-listener" : null
}

272

◦ Using POST

$ curl --digest -D - http://localhost:9990/management --header "Content-Type:
application/json" -d '{"operation":"read-resource", "include-runtime":"true" ,
"recursive":"true", "address":["subsystem","undertow","server","default-
server"], "json.pretty":1}' -u admin:admin
HTTP/1.1 401 Unauthorized
Connection: keep-alive
WWW-Authenticate: Digest realm="ManagementRealm",domain="/management",nonce=
"a3paQ9E0/l8NMTQwNjg5OTU0NDk4OKjmim2lopZNc5zCevjYWpk=",opaque="00000000000000000
000000000000000",algorithm=MD5
Content-Length: 77
Content-Type: text/html
Date: Fri, 01 Aug 2014 13:25:44 GMT

HTTP/1.1 200 OK
Connection: keep-alive
Authentication-Info: nextnonce=
"nTOSJd3ufO4NMTQwNjg5OTU0NDk5MeUsRw5rKXUT4Qvk1nbrG5c="
Content-Type: application/json; charset=utf-8
Content-Length: 1729
Date: Fri, 01 Aug 2014 13:25:45 GMT

{
 "outcome" : "success",
 "result" : {
 "default-host" : "default-host",
 "servlet-container" : "default",
 "ajp-listener" : null,
 "host" : {"default-host" : {
 "alias" : ["localhost"],
 "default-web-module" : "ROOT.war",
 "filter-ref" : {
 "server-header" : {"predicate" : null},
 "x-powered-by-header" : {"predicate" : null}
 },
 "location" : {"/" : {
 "handler" : "welcome-content",
 "filter-ref" : null
 }},
 "setting" : null
 }},
 "http-listener" : {"default" : {
 "allow-encoded-slash" : false,
 "allow-equals-in-cookie-value" : false,
 "always-set-keep-alive" : true,
 "buffer-pipelined-data" : true,
 "buffer-pool" : "default",
 "certificate-forwarding" : false,
 "decode-url" : true,

273

 "enabled" : true,
 "max-buffered-request-size" : 16384,
 "max-cookies" : 200,
 "max-header-size" : 51200,
 "max-headers" : 200,
 "max-parameters" : 1000,
 "max-post-size" : 10485760,
 "proxy-address-forwarding" : false,
 "read-timeout" : null,
 "receive-buffer" : null,
 "record-request-start-time" : false,
 "redirect-socket" : "https",
 "send-buffer" : null,
 "socket-binding" : "http",
 "tcp-backlog" : null,
 "tcp-keep-alive" : null,
 "url-charset" : "UTF-8",
 "worker" : "default",
 "write-timeout" : null
 }},
 "https-listener" : null
 }
}

• You may also used some encoded DMR but the result won’t be human readable

curl --digest -u admin:admin --header "Content-Type: application/dmr-encoded" -d
bwAAAAMACW9wZXJhdGlvbnMADXJlYWQtcmVzb3VyY2UAB2FkZHJlc3NsAAAAAAAHcmVjdXJzZVoB
http://localhost:9990/management

• You can deploy applications on the server

◦ First upload the file which will create a managed content. You will have to use
http://localhost:9990/management/add-content

curl --digest -u admin:admin --form file=@tiny-webapp.war http://localhost:
9990/management/add-content
{"outcome" : "success", "result" : { "BYTES_VALUE" :
"+QJlHTDrogO9pm/57GkT/vxWNz0=" }}

◦ Now let’s deploy the application

curl --digest -u admin:admin -L --header "Content-Type: application/json" -d
'{"content":[{"hash": {"BYTES_VALUE" : "+QJlHTDrogO9pm/57GkT/vxWNz0="}}],
"address": [{"deployment":"tiny-webapp.war"}], "operation":"add",
"enabled":"true"}' http://localhost:9990/management
{"outcome" : "success"}

274

http://localhost:9990/management/

12.4.5. Using some JAX-RS code

HttpAuthenticationFeature feature = HttpAuthenticationFeature.digest("admin", "admin"
);
Client client = ClientBuilder.newClient();
client.register(feature);
Entity<SimpleOperation> operation = Entity.entity(
 new SimpleOperation("read-resource", true, "subsystem", "undertow", "server",
"default-server"),
 MediaType.APPLICATION_JSON_TYPE);
WebTarget managementResource = client.target("http://localhost:9990/management");
String response = managementResource.request(MediaType.APPLICATION_JSON_TYPE)
 .header("Content-type", MediaType.APPLICATION_JSON)
 .post(operation, String.class);
System.out.println(response);

{"outcome" : "success", "result" : {"default-host" : "default-host", "servlet-
container" : "default", "ajp-listener" : null, "host" : {"default-host" : {"alias" :
["localhost"], "default-web-module" : "ROOT.war", "filter-ref" : {"server-header" : {
"predicate" : null}, "x-powered-by-header" : {"predicate" : null}}, "location" : {"/"
: {"handler" : "welcome-content", "filter-ref" : null}}, "setting" : null}}, "http-
listener" : {"default" : {"allow-encoded-slash" : false, "allow-equals-in-cookie-
value" : false, "always-set-keep-alive" : true, "buffer-pipelined-data" : true,
"buffer-pool" : "default", "certificate-forwarding" : false, "decode-url" : true,
"enabled" : true, "max-buffered-request-size" : 16384, "max-cookies" : 200, "max-
header-size" : 51200, "max-headers" : 200, "max-parameters" : 1000, "max-post-size" :
10485760, "proxy-address-forwarding" : false, "read-timeout" : null, "receive-buffer"
: null, "record-request-start-time" : false, "redirect-socket" : "https", "send-
buffer" : null, "socket-binding" : "http", "tcp-backlog" : null, "tcp-keep-alive" :
null, "url-charset" : "UTF-8", "worker" : "default", "write-timeout" : null}}, "https-
listener" : null}}

12.5. The native management API
A standalone WildFly process, or a managed domain Domain Controller or slave Host Controller
process can be configured to listen for remote management requests using its "native management
interface":

<native-interface interface="management" port="9999" security-realm="ManagementRealm
"/>

~(See standalone/configuration/standalone.xml or domain/configuration/host.xml)~

The CLI tool that comes with the application server uses this interface, and user can develop
custom clients that use it as well. In this section we’ll cover the basics on how to develop such a
client. We’ll also cover details on the format of low-level management operation requests and

275

responses – information that should prove useful for users of the CLI tool as well.

12.5.1. Native Management Client Dependencies

The native management interface uses an open protocol based on the JBoss Remoting library. JBoss
Remoting is used to establish a communication channel from the client to the process being
managed. Once the communication channel is established the primary traffic over the channel is
management requests initiated by the client and asynchronous responses from the target process.

A custom Java-based client should have the maven artifact org.jboss.as:jboss-as-controller-
client and its dependencies on the classpath. The other dependencies are:

Maven Artifact Purpose

org.jboss.remoting:jboss-remoting Remote communication

org.jboss:jboss-dmr Detyped representation of the management
model

org.jboss.as:jboss-as-protocol Wire protocol for remote WildFly management

org.jboss.sasl:jboss-sasl SASL authentication

org.jboss.xnio:xnio-api Non-blocking IO

org.jboss.xnio:xnio-nio Non-blocking IO

org.jboss.logging:jboss-logging Logging

org.jboss.threads:jboss-threads Thread management

org.jboss.marshalling:jboss-marshalling Marshalling and unmarshalling data to/from
streams

The client API is entirely within the org.jboss.as:jboss-as-controller-client artifact; the other
dependencies are part of the internal implementation of org.jboss.as:jboss-as-controller-client
and are not compile-time dependencies of any custom client based on it.

The management protocol is an open protocol, so a completely custom client could be developed
without using these libraries (e.g. using Python or some other language.)

12.5.2. Working with a ModelControllerClient

The org.jboss.as.controller.client.ModelControllerClient class is the main class a custom client
would use to manage a WildFly server instance or a Domain Controller or slave Host Controller.

The custom client must have maven artifact org.jboss.as:jboss-as-controller-client and its
dependencies on the classpath.

Creating the ModelControllerClient

To create a management client that can connect to your target process’s native management socket,
simply:

276

ModelControllerClient client =
ModelControllerClient.Factory.create(InetAddress.getByName("localhost"), 9999);

The address and port are what is configured in the target process' <management><management-
interfaces><native-interface…/> element.

Typically, however, the native management interface will be secured, requiring clients to
authenticate. On the client side, the custom client will need to provide the user’s authentication
credentials, obtained in whatever manner is appropriate for the client (e.g. from a dialog box in a
GUI-based client.) Access to these credentials is provided by passing in an implementation of the
javax.security.auth.callback.CallbackHandler interface. For example:

static ModelControllerClient createClient(final InetAddress host, final int port,
 final String username, final char[] password, final String
securityRealmName) {

 final CallbackHandler callbackHandler = new CallbackHandler() {

 public void handle(Callback[] callbacks) throws IOException,
UnsupportedCallbackException {
 for (Callback current : callbacks) {
 if (current instanceof NameCallback) {
 NameCallback ncb = (NameCallback) current;
 ncb.setName(username);
 } else if (current instanceof PasswordCallback) {
 PasswordCallback pcb = (PasswordCallback) current;
 pcb.setPassword(password.toCharArray());
 } else if (current instanceof RealmCallback) {
 RealmCallback rcb = (RealmCallback) current;
 rcb.setText(rcb.getDefaultText());
 } else {
 throw new UnsupportedCallbackException(current);
 }
 }
 }
 };

 return ModelControllerClient.Factory.create(host, port, callbackHandler);
}

Creating an operation request object

Management requests are formulated using the org.jboss.dmr.ModelNode class from the jboss-dmr
library. The jboss-dmr library allows the complete WildFly management model to be expressed
using a very small number of Java types. See Detyped management and the jboss-dmr library for
full details on using this library.

Let’s show an example of creating an operation request object that can be used to read the resource

277

Detyped_management_and_the_jboss-dmr_library.html
Global_operations.html#src-557234_Globaloperations-read-resource-description

description for the web subsystem’s HTTP connector:

ModelNode op = new ModelNode();
op.get("operation").set("read-resource-description");

ModelNode address = op.get("address");
address.add("subsystem", "web");
address.add("connector", "http");

op.get("recursive").set(true);
op.get("operations").set(true);

What we’ve done here is created a ModelNode of type ModelType.OBJECT with the following fields:

• operation – the name of the operation to invoke. All operation requests must include this field
and its value must be a String.

• address – the address of the resource to invoke the operation against. This field’s must be of
ModelType.LIST with each element in the list being a ModelType.PROPERTY. If this field is omitted
the operation will target the root resource. The operation can be targeted at any address in the
management model; here we are targeting it at the resource for the web subsystem’s http
connector.

In this case, the request includes two optional parameters:

• recursive – true means you want the description of child resources under this resource. Default
is false

• operations – true means you want the description of operations exposed by the resource to be
included. Default is false.

Different operations take different parameters, and some take no parameters at all.

See Format of a Detyped Operation Request for full details on the structure of a ModelNode that will
represent an operation request.

The example above produces an operation request ModelNode equivalent to what the CLI produces
internally when it parses and executes the following low-level CLI command:

[localhost:9999 /] /subsystem=web/connector=http:read-resource-description(recursive
=true,operations=true)

Execute the operation and manipulate the result:

The execute method sends the operation request ModelNode to the process being managed and
returns a ModelNode the contains the process' response:

278

Global_operations.html#src-557234_Globaloperations-read-resource-description
#src-557212_ThenativemanagementAPI-request-format

ModelNode returnVal = client.execute(op);
System.out.println(returnVal.get("result").toString());

See Format of a Detyped Operation Response for general details on the structure of the "returnVal"
ModelNode.

The execute operation shown above will block the calling thread until the response is received from
the process being managed. ModelControllerClient also exposes and API allowing asynchronous
invocation:

Future<ModelNode> future = client.executeAsync(op);
. . . // do other stuff
ModelNode returnVal = future.get();
System.out.println(returnVal.get("result").toString());

Close the ModelControllerClient

A ModelControllerClient can be reused for multiple requests. Creating a new ModelControllerClient
for each request is an anti-pattern. However, when the ModelControllerClient is no longer needed,
it should always be explicitly closed, allowing it to close down any connections to the process it was
managing and release other resources:

client.close();

12.5.3. Format of a Detyped Operation Request

The basic method a user of the WildFly 10.1 programmatic management API would use is very
simple:

ModelNode execute(ModelNode operation) throws IOException;

where the return value is the detyped representation of the response, and operation is the detyped
representation of the operation being invoked.

The purpose of this section is to document the structure of operation.

See Format of a Detyped Operation Response for a discussion of the format of the response.

Simple Operations

A text representation of simple operation would look like this:

279

#src-557212_ThenativemanagementAPI-response-format
#src-557212_ThenativemanagementAPI-response-format

{
 "operation" => "write-attribute",
 "address" => [
 ("profile" => "production"),
 ("subsystem" => "threads"),
 ("bounded-queue-thread-pool" => "pool1")
],
 "name" => "count",
 "value" => 20
}

Java code to produce that output would be:

ModelNode op = new ModelNode();
op.get("operation").set("write-attribute");
ModelNode addr = op.get("address");
addr.add("profile", "production");
addr.add("subsystem", "threads");
addr.add("bounded-queue-thread-pool", "pool1");
op.get("name").set("count");
op.get("value").set(20);
System.out.println(op);

The order in which the outermost elements appear in the request is not relevant. The required
elements are:

• operation – String – The name of the operation being invoked.

• address – the address of the managed resource against which the request should be executed. If
not set, the address is the root resource. The address is an ordered list of key-value pairs
describing where the resource resides in the overall management resource tree. Management
resources are organized in a tree, so the order in which elements in the address occur is
important.

The other key/value pairs are parameter names and their values. The names and values should
match what is specified in the operation’s description.

Parameters may have any name, except for the reserved words operation, address and operation-
headers.

Operation Headers

Besides the special operation and address values discussed above, operation requests can also
include special "header" values that help control how the operation executes. These headers are
created under the special reserved word operation-headers:

280

Description_of_the_Management_Model.html#src-557210_DescriptionoftheManagementModel-operation-description

ModelNode op = new ModelNode();
op.get("operation").set("write-attribute");
ModelNode addr = op.get("address");
addr.add("base", "domain");
addr.add("profile", "production");
addr.add("subsystem", "threads");
addr.add("bounded-queue-thread-pool", "pool1");
op.get("name").set("count");
op.get("value").set(20);
op.get("operation-headers", "rollback-on-runtime-failure").set(false);
System.out.println(op);

This produces:

{
 "operation" => "write-attribute",
 "address" => [
 ("profile" => "production"),
 ("subsystem" => "threads"),
 ("bounded-queue-thread-pool" => "pool1")
],
 "name" => "count",
 "value" => 20,
 "operation-headers" => {
 "rollback-on-runtime-failure => false
 }
}

The following operation headers are supported:

• rollback-on-runtime-failure – boolean, optional, defaults to true. Whether an operation that
successfully updates the persistent configuration model should be reverted if it fails to apply to
the runtime. Operations that affect the persistent configuration are applied in two stages – first
to the configuration model and then to the actual running services. If there is an error applying
to the configuration model the operation will be aborted with no configuration change and no
change to running services will be attempted. However, operations are allowed to change the
configuration model even if there is a failure to apply the change to the running services – if
and only if this rollback-on-runtime-failure header is set to false. So, this header only deals
with what happens if there is a problem applying an operation to the running state of a server
(e.g. actually increasing the size of a runtime thread pool.)

• rollout-plan – only relevant to requests made to a Domain Controller or Host Controller. See "
Operations with a Rollout Plan" for details.

• allow-resource-service-restart – boolean, optional, defaults to false. Whether an operation that
requires restarting some runtime services in order to take effect should do so. See discussion of
resource-services in the "Applying Updates to Runtime Services" section of the Description of
the Management Model section for further details.

281

#src-557212_ThenativemanagementAPI-rollout-plan
Description_of_the_Management_Model.html#src-557210_DescriptionoftheManagementModel-applying-runtime-updates
Description_of_the_Management_Model.html#src-557210_DescriptionoftheManagementModel-applying-runtime-updates

• roles – String or list of strings. Name(s) of RBAC role(s) the permissions for which should be
used when making access control decisions instead of those from the roles normally associated
with the user invoking the operation. Only respected if the user is normally associated with a
role with all permissions (i.e. SuperUser), meaning this can only be used to reduce permissions
for a caller, not to increase permissions.

• blocking-timeout – int, optional, defaults to 300. Maximum time, in seconds, that the operation
should block at various points waiting for completion. If this period is exceeded, the operation
will roll back. Does not represent an overall maximum execution time for an operation; rather
it is meant to serve as a sort of fail-safe measure to prevent problematic operations indefinitely
tying up resources.

Composite Operations

The root resource for a Domain or Host Controller or an individual server will expose an operation
named " `composite`". This operation executes a list of other operations as an atomic unit
(although the atomicity requirement can be relaxed. The structure of the request for the "
`composite`" operation has the same fundamental structure as a simple operation (i.e. operation
name, address, params as key value pairs).

{
 "operation" => "composite",
 "address" => [],
 "steps" => [
 {
 "operation" => "write-attribute",
 "address" => [
 ("profile" => "production"),
 ("subsystem" => "threads"),
 ("bounded-queue-thread-pool" => "pool1")
],
 "count" => "count",
 "value" => 20
 },
 {
 "operation" => "write-attribute",
 "address" => [
 ("profile" => "production"),
 ("subsystem" => "threads"),
 ("bounded-queue-thread-pool" => "pool2")
],
 "name" => "count",
 "value" => 10
 }
],
 "operation-headers" => {
 "rollback-on-runtime-failure => false
 }
}

282

#src-557212_ThenativemanagementAPI-rollback-on-runtime-failure

The "composite" operation takes a single parameter:

• steps – a list, where each item in the list has the same structure as a simple operation request. In
the example above each of the two steps is modifying the thread pool configuration for a
different pool. There need not be any particular relationship between the steps. Note that the
rollback-on-runtime-failure and rollout-plan operation headers are not supported for the
individual steps in a composite operation.

 +
The `rollback-on-runtime-failure` operation header discussed above has a
particular meaning when applied to a composite operation, controlling
whether steps that successfully execute should be reverted if other
steps fail at runtime. Note that if any steps modify the persistent
configuration, and any of those steps fail, all steps will be reverted.
Partial/incomplete changes to the persistent configuration are not
allowed.

Operations with a Rollout Plan

Operations targeted at domain or host level resources can potentially impact multiple servers. Such
operations can include a "rollout plan" detailing the sequence in which the operation should be
applied to servers as well as policies for detailing whether the operation should be reverted if it
fails to execute successfully on some servers.

If the operation includes a rollout plan, the structure is as follows:

283

{
 "operation" => "write-attribute",
 "address" => [
 ("profile" => "production"),
 ("subsystem" => "threads"),
 ("bounded-queue-thread-pool" => "pool1")
],
 "name" => "count",
 "value" => 20,
 "operation-headers" => {
 "rollout-plan" => {
 "in-series" => [
 {
 "concurrent-groups" => {
 "groupA" => {
 "rolling-to-servers" => true,
 "max-failure-percentage" => 20
 },
 "groupB" => undefined
 }
 },
 {
 "server-group" => {
 "groupC" => {
 "rolling-to-servers" => false,
 "max-failed-servers" => 1
 }
 }
 },
 {
 "concurrent-groups" => {
 "groupD" => {
 "rolling-to-servers" => true,
 "max-failure-percentage" => 20
 },
 "groupE" => undefined
 }
 }
],
 "rollback-across-groups" => true
 }
 }
}

As you can see, the rollout plan is another structure in the operation-headers section. The root node
of the structure allows two children:

• in-series – a list – A list of activities that are to be performed in series, with each activity
reaching completion before the next step is executed. Each activity involves the application of

284

the operation to the servers in one or more server groups. See below for details on each element
in the list.

• rollback-across-groups – boolean – indicates whether the need to rollback the operation on all
the servers in one server group should trigger a rollback across all the server groups. This is an
optional setting, and defaults to false.

Each element in the list under the in-series node must have one or the other of the following
structures:

• concurrent-groups – a map of server group names to policies controlling how the operation
should be applied to that server group. For each server group in the map, the operation may be
applied concurrently. See below for details on the per-server-group policy configuration.

• server-group – a single key/value mapping of a server group name to a policy controlling how
the operation should be applied to that server group. See below for details on the policy
configuration. (Note: there is no difference in plan execution between this and a " `concurrent-
groups`" map with a single entry.)

The policy controlling how the operation is applied to the servers within a server group has the
following elements, each of which is optional:

• rolling-to-servers – boolean – If true, the operation will be applied to each server in the group
in series. If false or not specified, the operation will be applied to the servers in the group
concurrently.

• max-failed-servers – int – Maximum number of servers in the group that can fail to apply the
operation before it should be reverted on all servers in the group. The default value if not
specified is zero; i.e. failure on any server triggers rollback across the group.

• max-failure-percentage – int between 0 and 100 – Maximum percentage of the total number of
servers in the group that can fail to apply the operation before it should be reverted on all
servers in the group. The default value if not specified is zero; i.e. failure on any server triggers
rollback across the group.

If both max-failed-servers and max-failure-percentage are set, max-failure-percentage takes
precedence.

Looking at the (contrived) example above, application of the operation to the servers in the domain
would be done in 3 phases. If the policy for any server group triggers a rollback of the operation
across the server group, all other server groups will be rolled back as well. The 3 phases are:

1. Server groups groupA and groupB will have the operation applied concurrently. The operation
will be applied to the servers in groupA in series, while all servers in groupB will handle the
operation concurrently. If more than 20% of the servers in groupA fail to apply the operation, it
will be rolled back across that group. If any servers in groupB fail to apply the operation it will
be rolled back across that group.

2. Once all servers in groupA and groupB are complete, the operation will be applied to the
servers in groupC. Those servers will handle the operation concurrently. If more than one
server in groupC fails to apply the operation it will be rolled back across that group.

3. Once all servers in groupC are complete, server groups groupD and groupE will have the

285

operation applied concurrently. The operation will be applied to the servers in groupD in series,
while all servers in groupE will handle the operation concurrently. If more than 20% of the
servers in groupD fail to apply the operation, it will be rolled back across that group. If any
servers in groupE fail to apply the operation it will be rolled back across that group.

Default Rollout Plan

All operations that impact multiple servers will be executed with a rollout plan. However, actually
specifying the rollout plan in the operation request is not required. If no rollout-plan operation
header is specified, a default plan will be generated. The plan will have the following
characteristics:

• There will only be a single high level phase. All server groups affected by the operation will
have the operation applied concurrently.

• Within each server group, the operation will be applied to all servers concurrently.

• Failure on any server in a server group will cause rollback across the group.

• Failure of any server group will result in rollback of all other server groups.

Creating and reusing a Rollout Plan

Since a rollout plan may be quite complex, having to pass it as a header every time can become
quickly painful. So instead we can store it in the model and then reference it when we want to use
it.
To create a rollout plan you can use the operation rollout-plan add like this :

rollout-plan add --name=simple --content={"rollout-plan" => {"in-series" => [{"server-
group" => {"main-server-group" => {"rolling-to-servers" => false,"max-failed-servers"
=> 1}}}, {"server-group" => {"other-server-group" => {"rolling-to-servers" =>
true,"max-failure-percentage" => 20}}}],"rollback-across-groups" => true}}

This will create a rollout plan called simple in the content repository.

286

[domain@192.168.1.20:9999 /] /management-client-content=rollout-plans/rollout-plan
=simple:read-resource
{
 "outcome" => "success",
 "result" => {
 "content" => {"rollout-plan" => {
 "in-series" => [
 {"server-group" => {"main-server-group" => {
 "rolling-to-servers" => false,
 "max-failed-servers" => 1
 }}},
 {"server-group" => {"other-server-group" => {
 "rolling-to-servers" => true,
 "max-failure-percentage" => 20
 }}}
],
 "rollback-across-groups" => true
 }},
 "hash" => bytes {
 0x13, 0x12, 0x76, 0x65, 0x8a, 0x28, 0xb8, 0xbc,
 0x34, 0x3c, 0xe9, 0xe6, 0x9f, 0x24, 0x05, 0xd2,
 0x30, 0xff, 0xa4, 0x34
 }
 }
}

Now you may reference the roolout plan in your command by adding a header just like this :

deploy /quickstart/ejb-in-war/target/wildfly-ejb-in-war.war --all-server-groups
--headers={rollout name=simple}

12.5.4. Format of a Detyped Operation Response

As noted previously, the basic method a user of the WildFly 10.1 programmatic management API
would use is very simple:

ModelNode execute(ModelNode operation) throws IOException;

where the return value is the detyped representation of the response, and operation is the detyped
representation of the operating being invoked.

The purpose of this section is to document the structure of the return value.

For the format of the request, see Format of a Detyped Operation Request.

287

#src-557212_ThenativemanagementAPI-request-format

Simple Responses

Simple responses are provided by the following types of operations:

• Non-composite operations that target a single server. (See below for more on composite
operations).

• Non-composite operations that target a Domain Controller or slave Host Controller and don’t
require the responder to apply the operation on multiple servers and aggregate their results
(e.g. a simple read of a domain configuration property.)

The response will always include a simple boolean outcome field, with one of three possible values:

• success – the operation executed successfully

• failed – the operation failed

• cancelled – the execution of the operation was cancelled. (This would be an unusual outcome
for a simple operation which would generally very rapidly reach a point in its execution where
it couldn’t be cancelled.)

The other fields in the response will depend on whether the operation was successful.

The response for a failed operation:

{
 "outcome" => "failed",
 "failure-description" => "[JBAS-12345] Some failure message"
}

A response for a successful operation will include an additional field:

• result – the return value, or undefined for void operations or those that return null

A non-void result:

{
 "outcome" => "success",
 "result" => {
 "name" => "Brian",
 "age" => 22
 }
}

A void result:

288

{
 "outcome" => "success",
 "result" => undefined
}

The response for a cancelled operation has no other fields:

{
 "outcome" => "cancelled"
}

Response Headers

Besides the standard outcome, result and failure-description fields described above, the response
may also include various headers that provide more information about the affect of the operation
or about the overall state of the server. The headers will be child element under a field named
response-headers. For example:

{
 "outcome" => "success",
 "result" => undefined,
 "response-headers" => {
 "operation-requires-reload" => true,
 "process-state" => "reload-required"
 }
}

A response header is typically related to whether an operation could be applied to the targeted
runtime without requiring a restart of some or all services, or even of the target process itself.
Please see the "Applying Updates to Runtime Services" section of the Description of the
Management Model section for a discussion of the basic concepts related to what happens if an
operation requires a service restart to be applied.

The current possible response headers are:

• operation-requires-reload – boolean – indicates that the specific operation that has generated
this response requires a restart of all services in the process in order to take effect in the
runtime. This would typically only have a value of 'true'; the absence of the header is the same
as a value of 'false.'

• operation-requires-restart – boolean – indicates that the specific operation that has generated
this response requires a full process restart in order to take effect in the runtime. This would
typically only have a value of 'true'; the absence of the header is the same as a value of 'false.'

• process-state – enumeration – Provides information about the overall state of the target
process. One of the following values:

◦ starting – the process is starting

289

Description_of_the_Management_Model.html#src-557210_DescriptionoftheManagementModel-applying-runtime-updates
Description_of_the_Management_Model.html#src-557210_DescriptionoftheManagementModel-applying-runtime-updates

◦ running – the process is in a normal running state. The process-state header would typically
not be seen with this value; the absence of the header is the same as a value of 'running'.

◦ reload-required – some operation (not necessarily this one) has executed that requires a
restart of all services in order for a configuration change to take effect in the runtime.

◦ restart-required – some operation (not necessarily this one) has executed that requires a
full process restart in order for a configuration change to take effect in the runtime.

◦ stopping – the process is stopping

Basic Composite Operation Responses

A composite operation is one that incorporates more than one simple operation in a list and
executes them atomically. See the "Composite Operations" section for more information.

Basic composite responses are provided by the following types of operations:

• Composite operations that target a single server.

• Composite operations that target a Domain Controller or a slave Host Controller and don’t
require the responder to apply the operation on multiple servers and aggregate their results
(e.g. a list of simple reads of domain configuration properties.)

The high level format of a basic composite operation response is largely the same as that of a simple
operation response, although there is an important semantic difference. For a composite operation,
the meaning of the outcome flag is controlled by the value of the operation request’s rollback-on-
runtime-failure header field. If that field was false (default is true), the outcome flag will be success
if all steps were successfully applied to the persistent configuration even if none of the composite
operation’s steps was successfully applied to the runtime.

What’s distinctive about a composite operation response is the result field. First, even if the
operation was not successful, the result field will usually be present. (It won’t be present if there
was some sort of immediate failure that prevented the responder from even attempting to execute
the individual operations.) Second, the content of the result field will be a map. Each entry in the
map will record the result of an element in the steps parameter of the composite operation request.
The key for each item in the map will be the string " step-X`" where "X" is the 1-based index of
the step’s position in the request’s `steps list. So each individual operation in the composite
operation will have its result recorded.

The individual operation results will have the same basic format as the simple operation results
described above. However, there are some differences from the simple operation case when the
individual operation’s outcome flag is failed. These relate to the fact that in a composite operation,
individual operations can be rolled back or not even attempted.

If an individual operation was not even attempted (because the overall operation was cancelled or,
more likely, a prior operation failed):

{
 "outcome" => "cancelled"
}

290

#src-557212_ThenativemanagementAPI-composite-operations

An individual operation that failed and was rolled back:

{
 "outcome" => "failed",
 "failure-description" => "[JBAS-12345] Some failure message",
 "rolled-back" => true
}

An individual operation that itself succeeded but was rolled back due to failure of another
operation:

{
 "outcome" => "failed",
 "result" => {
 "name" => "Brian",
 "age" => 22
 },
 "rolled-back" => true
}

An operation that failed and was rolled back:

{
 "outcome" => "failed",
 "failure-description" => "[JBAS-12345] Some failure message",
 "rolled-back" => true
}

Here’s an example of the response for a successful 2 step composite operation:

{
 "outcome" => "success",
 "result" => [
 {
 "outcome" => "success",
 "result" => {
 "name" => "Brian",
 "age" => 22
 }
 },
 {
 "outcome" => "success",
 "result" => undefined
 }
]
}

291

And for a failed 3 step composite operation, where the first step succeeded and the second failed,
triggering cancellation of the 3rd and rollback of the others:

{
 "outcome" => "failed",
 "failure-description" => "[JBAS-99999] Composite operation failed; see individual
operation results for details",
 "result" => [
 {
 "outcome" => "failed",
 "result" => {
 "name" => "Brian",
 "age" => 22
 },
 "rolled-back" => true
 },
 {
 "outcome" => "failed",
 "failure-description" => "[JBAS-12345] Some failure message",
 "rolled-back" => true
 },
 {
 "outcome" => "cancelled"
 }
]
}

Multi-Server Responses

Multi-server responses are provided by operations that target a Domain Controller or slave Host
Controller and require the responder to apply the operation on multiple servers and aggregate
their results (e.g. nearly all domain or host configuration updates.)

Multi-server operations are executed in several stages.

First, the operation may need to be applied against the authoritative configuration model
maintained by the Domain Controller (for domain.xml confgurations) or a Host Controller (for a
host.xml configuration). If there is a failure at this stage, the operation is automatically rolled back,
with a response like this:

{
 "outcome" => "failed",
 "failure-description" => {
 "domain-failure-description" => "[JBAS-33333] Failed to apply X to the domain
model"
 }
}

292

If the operation was addressed to the domain model, in the next stage the Domain Controller will
ask each slave Host Controller to apply it to its local copy of the domain model. If any Host
Controller fails to do so, the Domain Controller will tell all Host Controllers to revert the change,
and it will revert the change locally as well. The response to the client will look like this:

{
 "outcome" => "failed",
 "failure-description" => {
 "host-failure-descriptions" => {
 "hostA" => "[DOM-3333] Failed to apply to the domain model",
 "hostB" => "[DOM-3333] Failed to apply to the domain model"
 }
 }
}

If the preceding stages succeed, the operation will be pushed to all affected servers. If the operation
is successful on all servers, the response will look like this (this example operation has a void
response, hence the result for each server is undefined):

293

{
 "outcome" => "success",
 "result" => undefined,
 "server-groups" => {
 "groupA" => {
 "serverA-1" => {
 "host" => "host1",
 "response" => {
 "outcome" => "success",
 "result" => undefined
 }
 },
 "serverA-2" => {
 "host" => "host2",
 "response" => {
 "outcome" => "success",
 "result" => undefined
 }
 }
 },
 "groupB" => {
 "serverB-1" => {
 "host" => "host1",
 "response" => {
 "outcome" => "success",
 "result" => undefined
 }
 },
 "serverB-2" => {
 "host" => "host2",
 "response" => {
 "outcome" => "success",
 "result" => undefined
 }
 }
 }
 }
}

The operation need not succeed on all servers in order to get an "outcome" ⇒ "success" result. All
that is required is that it succeed on at least one server without the rollback policies in the rollout
plan triggering a rollback on that server. An example response in such a situation would look like
this:

294

{
 "outcome" => "success",
 "result" => undefined,
 "server-groups" => {
 "groupA" => {
 "serverA-1" => {
 "host" => "host1",
 "response" => {
 "outcome" => "success",
 "result" => undefined
 }
 },
 "serverA-2" => {
 "host" => "host2",
 "response" => {
 "outcome" => "success",
 "result" => undefined
 }
 }
 },
 "groupB" => {
 "serverB-1" => {
 "host" => "host1",
 "response" => {
 "outcome" => "success",
 "result" => undefined,
 "rolled-back" => true
 }
 },
 "serverB-2" => {
 "host" => "host2",
 "response" => {
 "outcome" => "success",
 "result" => undefined,
 "rolled-back" => true
 }
 },
 "serverB-3" => {
 "host" => "host3",
 "response" => {
 "outcome" => "failed",
 "failure-description" => "[DOM-4556] Something didn't work right",
 "rolled-back" => true
 }
 }
 }
 }
}

Finally, if the operation fails or is rolled back on all servers, an example response would look like

295

this:

{
 "outcome" => "failed",
 "server-groups" => {
 "groupA" => {
 "serverA-1" => {
 "host" => "host1",
 "response" => {
 "outcome" => "success",
 "result" => undefined
 }
 },
 "serverA-2" => {
 "host" => "host2",
 "response" => {
 "outcome" => "success",
 "result" => undefined
 }
 }
 },
 "groupB" => {
 "serverB-1" => {
 "host" => "host1",
 "response" => {
 "outcome" => "failed",
 "result" => undefined,
 "rolled-back" => true
 }
 },
 "serverB-2" => {
 "host" => "host2",
 "response" => {
 "outcome" => "failed",
 "result" => undefined,
 "rolled-back" => true
 }
 },
 "serverB-3" => {
 "host" => "host3",
 "response" => {
 "outcome" => "failed",
 "failure-description" => "[DOM-4556] Something didn't work right",
 "rolled-back" => true
 }
 }
 }
 }
}

296

Chapter 13. CLI Recipes

13.1. Properties

13.1.1. Adding, reading and removing system property using CLI

For standalone mode:

$./bin/jboss-cli.sh --connect controller=IP_ADDRESS
[standalone@IP_ADDRESS:9990 /] /system-property=foo:add(value=bar)
[standalone@IP_ADDRESS:9990 /] /system-property=foo:read-resource
{
 "outcome" => "success",
 "result" => {"value" => "bar"}
}
[standalone@IP_ADDRESS:9990 /] /system-property=foo:remove
{"outcome" => "success"}

For domain mode the same commands are used, you can add/read/remove system properties for:
All hosts and server instances in domain

[domain@IP_ADDRESS:9990 /] /system-property=foo:add(value=bar)
[domain@IP_ADDRESS:9990 /] /system-property=foo:read-resource
[domain@IP_ADDRESS:9990 /] /system-property=foo:remove

Host and its server instances

[domain@IP_ADDRESS:9990 /] /host=master/system-property=foo:add(value=bar)
[domain@IP_ADDRESS:9990 /] /host=master/system-property=foo:read-resource
[domain@IP_ADDRESS:9990 /] /host=master/system-property=foo:remove

Just one server instance

[domain@IP_ADDRESS:9990 /] /host=master/server-config=server-one/system-property=foo
:add(value=bar)
[domain@IP_ADDRESS:9990 /] /host=master/server-config=server-one/system-property=foo
:read-resource
[domain@IP_ADDRESS:9990 /] /host=master/server-config=server-one/system-property=foo
:remove

13.1.2. Overview of all system properties

Overview of all system properties in WildFly including OS system properties and properties
specified on command line using -D, -P or --properties arguments.

297

Standalone

[standalone@IP_ADDRESS:9990 /] /core-service=platform-mbean/type=runtime:read-
attribute(name=system-properties)

Domain

[domain@IP_ADDRESS:9990 /] /host=master/core-service=platform-mbean/type=runtime:read-
attribute(name=system-properties)
[domain@IP_ADDRESS:9990 /] /host=master/server=server-one/core-service=platform-mbean
/type=runtime:read-attribute(name=system-properties)

13.2. Configuration

13.2.1. List Subsystems

298

[standalone@localhost:9990 /] /:read-children-names(child-type=subsystem)
{
 "outcome" => "success",
 "result" => [
 "batch",
 "datasources",
 "deployment-scanner",
 "ee",
 "ejb3",
 "infinispan",
 "io",
 "jaxrs",
 "jca",
 "jdr",
 "jmx",
 "jpa",
 "jsf",
 "logging",
 "mail",
 "naming",
 "pojo",
 "remoting",
 "resource-adapters",
 "sar",
 "security",
 "threads",
 "transactions",
 "undertow",
 "webservices",
 "weld"
]
}

13.2.2. List description of available attributes and childs

Descriptions, possible attribute type and values, permission and whether expressions ($\{ … }) are
allowed from the underlying model are shown by the read-resource-description command.

/subsystem=datasources/data-source=ExampleDS:read-resource-description
{
 "outcome" => "success",
 "result" => {
 "description" => "A JDBC data-source configuration",
 "head-comment-allowed" => true,
 "tail-comment-allowed" => true,
 "attributes" => {
 "connection-url" => {
 "type" => STRING,
 "description" => "The JDBC driver connection URL",

299

 "expressions-allowed" => true,
 "nillable" => false,
 "min-length" => 1L,
 "max-length" => 2147483647L,
 "access-type" => "read-write",
 "storage" => "configuration",
 "restart-required" => "no-services"
 },
 "driver-class" => {
 "type" => STRING,
 "description" => "The fully qualified name of the JDBC driver class",
 "expressions-allowed" => true,
 "nillable" => true,
 "min-length" => 1L,
 "max-length" => 2147483647L,
 "access-type" => "read-write",
 "storage" => "configuration",
 "restart-required" => "no-services"
 },
 "datasource-class" => {
 "type" => STRING,
 "description" => "The fully qualified name of the JDBC datasource
class",
 "expressions-allowed" => true,
 "nillable" => true,
 "min-length" => 1L,
 "max-length" => 2147483647L,
 "access-type" => "read-write",
 "storage" => "configuration",
 "restart-required" => "no-services"
 },
 "jndi-name" => {
 "type" => STRING,
 "description" => "Specifies the JNDI name for the datasource",
 "expressions-allowed" => true,
 "nillable" => false,
 "access-type" => "read-write",
 "storage" => "configuration",
 "restart-required" => "no-services"
 },
 ...

13.2.3. View configuration as XML for domain model or host model

Assume you have a host that is called master

[domain@localhost:9990 /] /host=master:read-config-as-xml

Just for the domain or standalone

300

[domain@localhost:9990 /] :read-config-as-xml

13.2.4. Take a snapshot of what the current domain is

[domain@localhost:9990 /] :take-snapshot()
{
 "outcome" => "success",
 "result" => {
 "domain-results" => {"step-1" => {"name" =>
"JBOSS_HOME/domain/configuration/domain_xml_history/snapshot/20110908-
165222603domain.xml"}},
 "server-operations" => undefined
 }
}

13.2.5. Take the latest snapshot of the host.xml for a particular host

Assume you have a host that is called master

[domain@localhost:9990 /] /host=master:take-snapshot
{
 "outcome" => "success",
 "result" => {
 "domain-results" => {"step-1" => {"name" =>
"JBOSS_HOME/domain/configuration/host_xml_history/snapshot/20110908-165640215host.xml
"}},
 "server-operations" => undefined
 }
}

13.2.6. How to get interface address

The attribute for interface is named "resolved-address". It’s a runtime attribute so it does not show
up in :read-resource by default. You have to add the "include-runtime" parameter.

301

./jboss-cli.sh --connect
Connected to standalone controller at localhost:9990
[standalone@localhost:9990 /] cd interface=public
[standalone@localhost:9990 interface=public] :read-resource(include-runtime=true)
{
 "outcome" => "success",
 "result" => {
 "any" => undefined,
 "any-address" => undefined,
 "any-ipv4-address" => undefined,
 "any-ipv6-address" => undefined,
 "criteria" => [("inet-address" => expression "
${jboss.bind.address:127.0.0.1}")],
 "inet-address" => expression "${jboss.bind.address:127.0.0.1}",
 "link-local-address" => undefined,
 "loopback" => undefined,
 "loopback-address" => undefined,
 "multicast" => undefined,
 "name" => "public",
 "nic" => undefined,
 "nic-match" => undefined,
 "not" => undefined,
 "point-to-point" => undefined,
 "public-address" => undefined,
 "resolved-address" => "127.0.0.1",
 "site-local-address" => undefined,
 "subnet-match" => undefined,
 "up" => undefined,
 "virtual" => undefined
 }
}
[standalone@localhost:9990 interface=public] :read-attribute(name=resolved-address)
{
 "outcome" => "success",
 "result" => "127.0.0.1"
}

It’s similar for domain, just specify path to server instance:

[domain@localhost:9990 /] /host=master/server=server-one/interface=public:read-
attribute(name=resolved-address)
{
 "outcome" => "success",
 "result" => "127.0.0.1"
}

302

13.3. Runtime

13.3.1. Get all configuration and runtime details from CLI

./bin/jboss-cli.sh -c command=":read-resource(include-runtime=true, recursive=true,
recursive-depth=10)"

13.4. Scripting

13.4.1. Windows and "Press any key to continue …" issue

WildFly scripts for Windows end with "Press any key to continue …". This behavior is useful when
script is executed by double clicking the script but not when you need to invoke several commands
from custom script (e.g. 'bin/jboss-admin.bat --connect command=:shutdown').

To avoid "Press any key to continue …" message you need to specify NOPAUSE variable. Call 'set
NOPAUSE=true' in command line before running any WildFly 10.1 .bat script or include it in your
custom script before invoking scripts from WildFly.

13.5. Statistics

13.5.1. Read statistics of active datasources

/subsystem=datasources/data-source=ExampleDS/statistics=pool:read-resource(include-
runtime=true)
/subsystem=datasources/data-source=ExampleDS/statistics=jdbc:read-resource(include-
runtime=true)

or

/subsystem=datasources/data-source=ExampleDS:read-resource(include-runtime=true
,recursive=true)

13.6. Deployment

13.6.1. Undeploying and redeploying multiple deployments

CLI offers a way to efficiently undeploy or redeploy deployments in one simple command.

• To disable all enabled deployments: undeploy --keep-content *

• To redeploy all disabled deployments: deploy --name=*

303

13.6.2. Incremental deployment with the CLI

It can be desirable to incrementally create and(or) update a WildFly deployment. This chapter
details how this can be achieved using the WildFly CLI tool.

Steps to create an empty deployment and add an index html file.

1. Create an empty deployment named my app:

[standalone@localhost:9990 /] /deployment=myapp:add(content=[{empty=true}])

2. Add an index.html to my app:

[standalone@localhost:9990 /] /deployment=myapp:add-content(content=[{input-stream-
index=<press TAB>

Then use completion to navigate to your index.html file.

3. Provide a target name for index.html inside the deployment and execute the operation:

[standalone@localhost:9990 /] /deployment=myapp:add-content(content=[{input-stream-
index=./index.html, target-path=index.xhtml}]

4. Your content has been added, you can browse the content of a deployment using the browse-
content operation:

[standalone@localhost:9990 /] /deployment=myapp:browse-content(path=./)

5. You can display (or save) the content of a deployed file using the attachement command:

attachment display --operation=/deployment=myapp:read-content(path=index.xhtml)

6. You can remove content from a deployment:

/deployment=myapp:remove-content(paths=[./index.xhtml])

Tips

• add-content operation allows you to add more than one file (content argument is a list of
complex types).

• CLI offers completion for browse-content’s path and remove-content's paths argument.

• You can safely use operations that are using attached streams in batch operations. In the case of
batch operations, streams are attached to the composite operation.

304

On Windows, path separator '\' needs to be escaped, this is a limitation of CLI
handling complex types. The file path completion is automatically escaping the
paths it is proposing.

Notes for server side operation Handler implementors

In order to benefit from CLI support for attached file streams and file system completion, you need
to properly structure your operation arguments. Steps to create an operation that receives a list of
file streams attached to the operation:

1. Define your operation argument as a LIST of INT (The LIST value-type must be of type INT).

2. In the description of your argument, add the 2 following boolean descriptors: filesystem-path
and attached-streams

When your operation is called from the CLI, file system completion will be automatically proposed
for your argument. At execution time, the file system paths will be automatically converted onto
the index of the attached streams.

13.7. Downloading files with the CLI
Some management resources are exposing the content of files in the matter of streams. Streams
returned by a management operation are attached to the headers of the management response. The
CLI command attachment (see CLI help for a detailed description of this command) allows to
display or save the content of the attached streams.

• Displaying the content of server.log file:

attachment display --operation=/subsystem=logging/log-file=server.log:read-
resource(include-runtime)

• Saving locally the server.log file:

attachment save --operation=/subsystem=logging/log-file=server.log:read-resource
(include-runtime) --file=./server.log

• Displaying the content of a deployed file:

attachment display --operation=/deployment=myapp:read-content(path=index.xhtml)

• By default existing files will be preserved. Use the option --overwrite to overwrite existing file.

• attachment can be used in batch mode.

305

	WildFly Admin Guide
	Core management concepts
	Chapter 1. Target Audience
	1.1. Prerequisites
	1.2. Examples in this guide

	Chapter 2. Core management concepts
	2.1. Operating mode
	2.2. General configuration concepts
	2.3. Management resources

	Chapter 3. Management Clients
	3.1. Web Management Interface
	3.2. Default HTTP Interface Security
	3.3. Default Native Interface Security
	3.4. Command Line Interface
	3.5. Configuration Files

	Chapter 4. Interfaces and ports
	4.1. Interface declarations
	4.2. Socket Binding Groups
	4.3. IPv4 versus IPv6

	Chapter 5. Administrative security
	Chapter 6. Security Realms
	6.1. General Structure
	6.2. Using a Realm
	6.3. Authentication
	6.4. Authorization
	6.5. Out Of The Box Configuration
	6.6. add-user utility
	6.7. JMX Security
	6.8. Detailed Configuration
	6.9. Plug Ins
	6.10. Examples

	Chapter 7. Authorizing management actions with Role Based Access Control
	7.1. Access Control Providers
	7.2. RBAC provider overview
	7.3. Switching to the "rbac" provider
	7.4. Mapping users and groups to roles
	7.5. Adding custom roles in a managed domain
	7.6. Configuring constraints
	7.7. RBAC effect on administrator user experience
	7.8. Learning about your own role mappings
	7.9. "Run-as" capability for SuperUsers

	Chapter 8. Application deployment
	8.1. Managed Domain
	8.2. Standalone Server
	8.3. Managed and Unmanaged Deployments
	8.4. Deployment Overlays

	Chapter 9. Subsystem configuration
	9.1. EE Subsystem Configuration
	9.2. Naming Subsystem Configuration
	9.3. DataSource configuration
	9.4. Logging Configuration
	9.5. EJB3 subsystem configuration guide
	9.6. Undertow subsystem configuration
	9.7. Messaging configuration
	9.8. Security subsystem configuration
	9.9. Web services configuration
	9.10. Resource adapters
	9.11. Batch (JSR-352) Subsystem Configuration
	9.12. JSF Configuration
	9.13. JMX subsystem configuration
	9.14. Deployment Scanner configuration
	9.15. Core Management Subsystem Configuration
	9.16. Simple configuration subsystems

	Chapter 10. Domain Setup
	10.1. Domain Controller Configuration
	10.2. Host Controller Configuration
	10.3. Server groups
	10.4. Servers

	Chapter 11. Management tasks
	11.1. Command line parameters
	11.2. Starting & stopping Servers in a Managed Domain
	11.3. JVM settings
	11.4. Audit logging
	11.5. Canceling Management Operations
	11.6. Configuration file history

	Chapter 12. Management API reference
	12.1. Global operations
	12.2. Detyped management and the jboss-dmr library
	12.3. Description of the Management Model
	12.4. The HTTP management API
	12.5. The native management API

	Chapter 13. CLI Recipes
	13.1. Properties
	13.2. Configuration
	13.3. Runtime
	13.4. Scripting
	13.5. Statistics
	13.6. Deployment
	13.7. Downloading files with the CLI

